Jie Wang, Victor Magron, J. B. Lasserre, Ngoc Hoang Anh Mai
{"title":"CS-TSSOS:大规模多项式优化的相关项稀疏性","authors":"Jie Wang, Victor Magron, J. B. Lasserre, Ngoc Hoang Anh Mai","doi":"https://dl.acm.org/doi/10.1145/3569709","DOIUrl":null,"url":null,"abstract":"<p>This work proposes a new moment-SOS hierarchy, called <i>CS-TSSOS</i>, for solving large-scale sparse polynomial optimization problems. Its novelty is to exploit simultaneously <i>correlative sparsity</i> and <i>term sparsity</i> by combining advantages of two existing frameworks for sparse polynomial optimization. The former is due to Waki et al. [40] while the latter was initially proposed by Wang et al. [42] and later exploited in the TSSOS hierarchy [46, 47]. In doing so we obtain CS-TSSOS—a two-level hierarchy of semidefinite programming relaxations with (i) the crucial property to involve blocks of SDP matrices and (ii) the guarantee of convergence to the global optimum under certain conditions. We demonstrate its efficiency and scalability on several large-scale instances of the celebrated Max-Cut problem and the important industrial optimal power flow problem, involving up to six thousand variables and tens of thousands of constraints.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"289 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CS-TSSOS: Correlative and Term Sparsity for Large-Scale Polynomial Optimization\",\"authors\":\"Jie Wang, Victor Magron, J. B. Lasserre, Ngoc Hoang Anh Mai\",\"doi\":\"https://dl.acm.org/doi/10.1145/3569709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work proposes a new moment-SOS hierarchy, called <i>CS-TSSOS</i>, for solving large-scale sparse polynomial optimization problems. Its novelty is to exploit simultaneously <i>correlative sparsity</i> and <i>term sparsity</i> by combining advantages of two existing frameworks for sparse polynomial optimization. The former is due to Waki et al. [40] while the latter was initially proposed by Wang et al. [42] and later exploited in the TSSOS hierarchy [46, 47]. In doing so we obtain CS-TSSOS—a two-level hierarchy of semidefinite programming relaxations with (i) the crucial property to involve blocks of SDP matrices and (ii) the guarantee of convergence to the global optimum under certain conditions. We demonstrate its efficiency and scalability on several large-scale instances of the celebrated Max-Cut problem and the important industrial optimal power flow problem, involving up to six thousand variables and tens of thousands of constraints.</p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"289 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3569709\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3569709","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
CS-TSSOS: Correlative and Term Sparsity for Large-Scale Polynomial Optimization
This work proposes a new moment-SOS hierarchy, called CS-TSSOS, for solving large-scale sparse polynomial optimization problems. Its novelty is to exploit simultaneously correlative sparsity and term sparsity by combining advantages of two existing frameworks for sparse polynomial optimization. The former is due to Waki et al. [40] while the latter was initially proposed by Wang et al. [42] and later exploited in the TSSOS hierarchy [46, 47]. In doing so we obtain CS-TSSOS—a two-level hierarchy of semidefinite programming relaxations with (i) the crucial property to involve blocks of SDP matrices and (ii) the guarantee of convergence to the global optimum under certain conditions. We demonstrate its efficiency and scalability on several large-scale instances of the celebrated Max-Cut problem and the important industrial optimal power flow problem, involving up to six thousand variables and tens of thousands of constraints.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.