{"title":"异步时间积分的波形松弛","authors":"Peter Meisrimel, Philipp Birken","doi":"https://dl.acm.org/doi/10.1145/3569578","DOIUrl":null,"url":null,"abstract":"<p>We consider Waveform Relaxation (WR) methods for parallel and partitioned time-integration of surface-coupled multiphysics problems. WR allows independent time-discretizations on independent and adaptive time-grids, while maintaining high time-integration orders. Classical WR methods such as Jacobi or Gauss-Seidel WR are typically either parallel or converge quickly.</p><p>We present a novel parallel WR method utilizing asynchronous communication techniques to get both properties. Classical WR methods exchange discrete functions after time-integration of a subproblem. We instead asynchronously exchange time-point solutions during time-integration and directly incorporate all new information in the interpolants. We show both continuous and time-discrete convergence in a framework that generalizes existing linear WR convergence theory. An algorithm for choosing optimal relaxation in our new WR method is presented. </p><p>Convergence is demonstrated in two conjugate heat transfer examples. Our new method shows an improved performance over classical WR methods. In one example, we show a partitioned coupling of the compressible Euler equations with a nonlinear heat equation, with subproblems implemented using the open source libraries <monospace>DUNE</monospace> and <monospace>FEniCS</monospace>.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"75 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waveform Relaxation with Asynchronous Time-integration\",\"authors\":\"Peter Meisrimel, Philipp Birken\",\"doi\":\"https://dl.acm.org/doi/10.1145/3569578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider Waveform Relaxation (WR) methods for parallel and partitioned time-integration of surface-coupled multiphysics problems. WR allows independent time-discretizations on independent and adaptive time-grids, while maintaining high time-integration orders. Classical WR methods such as Jacobi or Gauss-Seidel WR are typically either parallel or converge quickly.</p><p>We present a novel parallel WR method utilizing asynchronous communication techniques to get both properties. Classical WR methods exchange discrete functions after time-integration of a subproblem. We instead asynchronously exchange time-point solutions during time-integration and directly incorporate all new information in the interpolants. We show both continuous and time-discrete convergence in a framework that generalizes existing linear WR convergence theory. An algorithm for choosing optimal relaxation in our new WR method is presented. </p><p>Convergence is demonstrated in two conjugate heat transfer examples. Our new method shows an improved performance over classical WR methods. In one example, we show a partitioned coupling of the compressible Euler equations with a nonlinear heat equation, with subproblems implemented using the open source libraries <monospace>DUNE</monospace> and <monospace>FEniCS</monospace>.</p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3569578\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3569578","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Waveform Relaxation with Asynchronous Time-integration
We consider Waveform Relaxation (WR) methods for parallel and partitioned time-integration of surface-coupled multiphysics problems. WR allows independent time-discretizations on independent and adaptive time-grids, while maintaining high time-integration orders. Classical WR methods such as Jacobi or Gauss-Seidel WR are typically either parallel or converge quickly.
We present a novel parallel WR method utilizing asynchronous communication techniques to get both properties. Classical WR methods exchange discrete functions after time-integration of a subproblem. We instead asynchronously exchange time-point solutions during time-integration and directly incorporate all new information in the interpolants. We show both continuous and time-discrete convergence in a framework that generalizes existing linear WR convergence theory. An algorithm for choosing optimal relaxation in our new WR method is presented.
Convergence is demonstrated in two conjugate heat transfer examples. Our new method shows an improved performance over classical WR methods. In one example, we show a partitioned coupling of the compressible Euler equations with a nonlinear heat equation, with subproblems implemented using the open source libraries DUNE and FEniCS.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.