近似逆累积分布函数以产生近似随机变量

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Michael Giles, Oliver Sheridan-Methven
{"title":"近似逆累积分布函数以产生近似随机变量","authors":"Michael Giles, Oliver Sheridan-Methven","doi":"https://dl.acm.org/doi/10.1145/3604935","DOIUrl":null,"url":null,"abstract":"<p>For random variables produced through the inverse transform method, approximate random variables are introduced, which are produced using approximations to a distribution’s inverse cumulative distribution function. These approximations are designed to be computationally inexpensive, and much cheaper than library functions which are exact to within machine precision, and thus highly suitable for use in Monte Carlo simulations. The approximation errors they introduce can then be eliminated through use of the multilevel Monte Carlo method. Two approximations are presented for the Gaussian distribution: a piecewise constant on equally spaced intervals, and a piecewise linear using geometrically decaying intervals. The errors of the approximations are bounded and the convergence demonstrated, and the computational savings measured for C and C++ implementations. Implementations tailored for Intel and Arm hardware are inspected, alongside hardware agnostic implementations built using OpenMP. The savings are incorporated into a nested multilevel Monte Carlo framework with the Euler-Maruyama scheme to exploit the speed ups without losing accuracy, offering speed ups by a factor of 5–7. These ideas are empirically extended to the Milstein scheme, and the non-central <i>χ</i><sup>2</sup> distribution for the Cox-Ingersoll-Ross process, offering speed ups of a factor of 250 or more.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"86 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating inverse cumulative distribution functions to produce approximate random variables\",\"authors\":\"Michael Giles, Oliver Sheridan-Methven\",\"doi\":\"https://dl.acm.org/doi/10.1145/3604935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For random variables produced through the inverse transform method, approximate random variables are introduced, which are produced using approximations to a distribution’s inverse cumulative distribution function. These approximations are designed to be computationally inexpensive, and much cheaper than library functions which are exact to within machine precision, and thus highly suitable for use in Monte Carlo simulations. The approximation errors they introduce can then be eliminated through use of the multilevel Monte Carlo method. Two approximations are presented for the Gaussian distribution: a piecewise constant on equally spaced intervals, and a piecewise linear using geometrically decaying intervals. The errors of the approximations are bounded and the convergence demonstrated, and the computational savings measured for C and C++ implementations. Implementations tailored for Intel and Arm hardware are inspected, alongside hardware agnostic implementations built using OpenMP. The savings are incorporated into a nested multilevel Monte Carlo framework with the Euler-Maruyama scheme to exploit the speed ups without losing accuracy, offering speed ups by a factor of 5–7. These ideas are empirically extended to the Milstein scheme, and the non-central <i>χ</i><sup>2</sup> distribution for the Cox-Ingersoll-Ross process, offering speed ups of a factor of 250 or more.</p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3604935\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3604935","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

对于通过逆变换方法产生的随机变量,引入近似随机变量,近似随机变量是通过近似分布的逆累积分布函数产生的。这些近似被设计成计算成本低廉,比精确到机器精度的库函数便宜得多,因此非常适合在蒙特卡罗模拟中使用。它们引入的近似误差可以通过使用多层蒙特卡罗方法来消除。提出了高斯分布的两种近似:在等间隔上的分段常数和在几何衰减间隔上的分段线性。近似的误差是有限的,并且证明了收敛性,并且测量了C和c++实现的计算节省。为英特尔和Arm硬件量身定制的实现,以及使用OpenMP构建的硬件不可知实现进行了检查。节省的费用与欧拉-丸山方案合并到嵌套的多层蒙特卡罗框架中,在不损失精度的情况下利用加速,提供5-7倍的速度提升。这些想法在经验上被扩展到米尔斯坦方案,以及Cox-Ingersoll-Ross过程的非中心χ2分布,提供了250倍或更多的加速因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating inverse cumulative distribution functions to produce approximate random variables

For random variables produced through the inverse transform method, approximate random variables are introduced, which are produced using approximations to a distribution’s inverse cumulative distribution function. These approximations are designed to be computationally inexpensive, and much cheaper than library functions which are exact to within machine precision, and thus highly suitable for use in Monte Carlo simulations. The approximation errors they introduce can then be eliminated through use of the multilevel Monte Carlo method. Two approximations are presented for the Gaussian distribution: a piecewise constant on equally spaced intervals, and a piecewise linear using geometrically decaying intervals. The errors of the approximations are bounded and the convergence demonstrated, and the computational savings measured for C and C++ implementations. Implementations tailored for Intel and Arm hardware are inspected, alongside hardware agnostic implementations built using OpenMP. The savings are incorporated into a nested multilevel Monte Carlo framework with the Euler-Maruyama scheme to exploit the speed ups without losing accuracy, offering speed ups by a factor of 5–7. These ideas are empirically extended to the Milstein scheme, and the non-central χ2 distribution for the Cox-Ingersoll-Ross process, offering speed ups of a factor of 250 or more.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信