emgr -经验语法框架版本5.99

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Christian Himpe
{"title":"emgr -经验语法框架版本5.99","authors":"Christian Himpe","doi":"https://dl.acm.org/doi/10.1145/3609860","DOIUrl":null,"url":null,"abstract":"<p>Version 5.99 of the empirical Gramian framework – <monospace>emgr</monospace> – completes a development cycle which focused on parametric model order reduction of gas network models while preserving compatibility to the previous development for the application of combined state and parameter reduction for neuroscience network models. Secondarily, new features concerning empirical Gramian types, perturbation design, and trajectory post-processing, as well as a Python version in addition to the default MATLAB / Octave implementation, have been added. This work summarizes these changes, particularly since <monospace>emgr</monospace> version 5.4, see <span>Himpe</span>, 2018 [Algorithms 11(7): 91], and gives recent as well as future applications, such as parameter identification in systems biology, based on the current feature set.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"2014 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"emgr – EMpirical GRamian Framework Version 5.99\",\"authors\":\"Christian Himpe\",\"doi\":\"https://dl.acm.org/doi/10.1145/3609860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Version 5.99 of the empirical Gramian framework – <monospace>emgr</monospace> – completes a development cycle which focused on parametric model order reduction of gas network models while preserving compatibility to the previous development for the application of combined state and parameter reduction for neuroscience network models. Secondarily, new features concerning empirical Gramian types, perturbation design, and trajectory post-processing, as well as a Python version in addition to the default MATLAB / Octave implementation, have been added. This work summarizes these changes, particularly since <monospace>emgr</monospace> version 5.4, see <span>Himpe</span>, 2018 [Algorithms 11(7): 91], and gives recent as well as future applications, such as parameter identification in systems biology, based on the current feature set.</p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3609860\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3609860","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

经验Gramian框架的5.99版本- emgr -完成了一个开发周期,重点是气体网络模型的参数模型降阶,同时保留了对神经科学网络模型组合状态和参数降阶应用的先前开发的兼容性。其次,添加了有关经验Gramian类型,摄动设计和轨迹后处理的新功能,以及默认MATLAB / Octave实现之外的Python版本。这项工作总结了这些变化,特别是自emgr 5.4版本以来,参见Himpe, 2018[算法11(7):91],并给出了最近和未来的应用,例如基于当前特征集的系统生物学中的参数识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
emgr – EMpirical GRamian Framework Version 5.99

Version 5.99 of the empirical Gramian framework – emgr – completes a development cycle which focused on parametric model order reduction of gas network models while preserving compatibility to the previous development for the application of combined state and parameter reduction for neuroscience network models. Secondarily, new features concerning empirical Gramian types, perturbation design, and trajectory post-processing, as well as a Python version in addition to the default MATLAB / Octave implementation, have been added. This work summarizes these changes, particularly since emgr version 5.4, see Himpe, 2018 [Algorithms 11(7): 91], and gives recent as well as future applications, such as parameter identification in systems biology, based on the current feature set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信