{"title":"基本柯万注入性及其应用","authors":"Yi Lin, Xiangdong Yang","doi":"10.1093/qmath/haac038","DOIUrl":null,"url":null,"abstract":"Consider the Hamiltonian action of a torus on a transversely symplectic foliation that is also Riemannian. When the transverse hard Lefschetz property is satisfied, we establish a foliated version of the Kirwan injectivity theorem and use it to study Hamiltonian torus actions on transversely Kähler foliations. Among other things, we prove a foliated analogue of the Carrell–Liberman theorem. As an application, this confirms a conjecture raised by Battaglia–Zaffran on the basic Hodge numbers of symplectic toric quasifolds. Our methods also allow us to present a symplectic approach to the calculation of the basic Betti numbers of symplectic toric quasifolds.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"199 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basic kirwan injectivity and its applications\",\"authors\":\"Yi Lin, Xiangdong Yang\",\"doi\":\"10.1093/qmath/haac038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the Hamiltonian action of a torus on a transversely symplectic foliation that is also Riemannian. When the transverse hard Lefschetz property is satisfied, we establish a foliated version of the Kirwan injectivity theorem and use it to study Hamiltonian torus actions on transversely Kähler foliations. Among other things, we prove a foliated analogue of the Carrell–Liberman theorem. As an application, this confirms a conjecture raised by Battaglia–Zaffran on the basic Hodge numbers of symplectic toric quasifolds. Our methods also allow us to present a symplectic approach to the calculation of the basic Betti numbers of symplectic toric quasifolds.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haac038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haac038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Consider the Hamiltonian action of a torus on a transversely symplectic foliation that is also Riemannian. When the transverse hard Lefschetz property is satisfied, we establish a foliated version of the Kirwan injectivity theorem and use it to study Hamiltonian torus actions on transversely Kähler foliations. Among other things, we prove a foliated analogue of the Carrell–Liberman theorem. As an application, this confirms a conjecture raised by Battaglia–Zaffran on the basic Hodge numbers of symplectic toric quasifolds. Our methods also allow us to present a symplectic approach to the calculation of the basic Betti numbers of symplectic toric quasifolds.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.