关于射影张量积的弱紧性

IF 0.6 4区 数学 Q3 MATHEMATICS
José Rodríguez
{"title":"关于射影张量积的弱紧性","authors":"José Rodríguez","doi":"10.1093/qmath/haac036","DOIUrl":null,"url":null,"abstract":"We study the property of being strongly weakly compactly generated (and some relatives) in projective tensor products of Banach spaces. Our main result is as follows. Let $1 \\unicode{x003C} p,q\\unicode{x003C}\\infty$ be such that $1/p+1/q\\geq 1$. Let X (resp., Y) be a Banach space with a countable unconditional finite-dimensional Schauder decomposition having a disjoint lower p-estimate (resp., q-estimate). If X and Y are strongly weakly compactly generated, then so is their projective tensor product $X {\\widehat{\\otimes}_\\pi} Y$.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On weak compactness in projective tensor products\",\"authors\":\"José Rodríguez\",\"doi\":\"10.1093/qmath/haac036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the property of being strongly weakly compactly generated (and some relatives) in projective tensor products of Banach spaces. Our main result is as follows. Let $1 \\\\unicode{x003C} p,q\\\\unicode{x003C}\\\\infty$ be such that $1/p+1/q\\\\geq 1$. Let X (resp., Y) be a Banach space with a countable unconditional finite-dimensional Schauder decomposition having a disjoint lower p-estimate (resp., q-estimate). If X and Y are strongly weakly compactly generated, then so is their projective tensor product $X {\\\\widehat{\\\\otimes}_\\\\pi} Y$.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haac036\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haac036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了Banach空间的射影张量积的强弱紧生成(及其相关性质)。我们的主要结果如下。让$1 \unicode{x003C} p,q\unicode{x003C}\infty$变成$1/p+1/q\geq 1$。设X。, Y)是一个Banach空间,该空间具有一个不相交的低p估计(p < 0.05)的可数无条件有限维Schauder分解。, q-estimate)。如果X和Y是强弱紧生成的,那么它们的射影张量积$X {\widehat{\otimes}_\pi} Y$也是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On weak compactness in projective tensor products
We study the property of being strongly weakly compactly generated (and some relatives) in projective tensor products of Banach spaces. Our main result is as follows. Let $1 \unicode{x003C} p,q\unicode{x003C}\infty$ be such that $1/p+1/q\geq 1$. Let X (resp., Y) be a Banach space with a countable unconditional finite-dimensional Schauder decomposition having a disjoint lower p-estimate (resp., q-estimate). If X and Y are strongly weakly compactly generated, then so is their projective tensor product $X {\widehat{\otimes}_\pi} Y$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信