Maria Caamano, José Miguel Juan, Michael Felux, Daniel Gerbeth, Guillermo González‐Casado, Jaume Sanz
{"title":"基于网络的电离层梯度监测支持GBAS","authors":"Maria Caamano, José Miguel Juan, Michael Felux, Daniel Gerbeth, Guillermo González‐Casado, Jaume Sanz","doi":"10.1002/navi.411","DOIUrl":null,"url":null,"abstract":"Large ionospheric gradients acting between a Ground Based Augmentation System (GBAS) reference station and an aircraft on approach could lead to hazardous position errors if undetected. Current GBAS stations provide solutions against this threat that rely on the use of “worst‐case” conservative threat models, which could limit the availability of the system.","PeriodicalId":501157,"journal":{"name":"NAVIGATION","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network‐based ionospheric gradient monitoring to support GBAS\",\"authors\":\"Maria Caamano, José Miguel Juan, Michael Felux, Daniel Gerbeth, Guillermo González‐Casado, Jaume Sanz\",\"doi\":\"10.1002/navi.411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large ionospheric gradients acting between a Ground Based Augmentation System (GBAS) reference station and an aircraft on approach could lead to hazardous position errors if undetected. Current GBAS stations provide solutions against this threat that rely on the use of “worst‐case” conservative threat models, which could limit the availability of the system.\",\"PeriodicalId\":501157,\"journal\":{\"name\":\"NAVIGATION\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAVIGATION\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/navi.411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAVIGATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/navi.411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network‐based ionospheric gradient monitoring to support GBAS
Large ionospheric gradients acting between a Ground Based Augmentation System (GBAS) reference station and an aircraft on approach could lead to hazardous position errors if undetected. Current GBAS stations provide solutions against this threat that rely on the use of “worst‐case” conservative threat models, which could limit the availability of the system.