{"title":"从测量的最终数据确定横向动力显微镜中未知的剪切力","authors":"Onur Baysal, Alemdar Hasanov, Sakthivel Kumarasamy","doi":"10.1515/jiip-2023-0021","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new methodology, based on the inverse problem approach, for the determination of an unknown shear force acting on the inaccessible tip of the microcantilever, which is a key component of <jats:italic>transverse dynamic force microscopy</jats:italic> (TDFM). The mathematical modelling of this phenomenon leads to the inverse problem of determining the shear force <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>g</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0228.png\" /> <jats:tex-math>{g(t)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> acting on the inaccessible boundary <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0276.png\" /> <jats:tex-math>{x=\\ell}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in a system governed by the variable coefficient Euler–Bernoulli equation <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>ρ</m:mi> <m:mi>A</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>t</m:mi> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0096.png\" /> <jats:tex-math>\\rho_{A}(x)u_{tt}+\\mu(x)u_{t}+(r(x)u_{xx}+\\kappa(x)u_{xxt})_{xx}=0,\\quad(x,t)% \\in(0,\\ell)\\times(0,T),</jats:tex-math> </jats:alternatives> </jats:disp-formula> subject to the homogeneous initial conditions and the boundary conditions <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>x</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>x</m:mi> </m:msub> </m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0104.png\" /> <jats:tex-math>u(0,t)=u_{0}(t),\\quad u_{x}(0,t)=0,\\quad(u_{xx}(x,t)+\\kappa(x)u_{xxt})_{x=\\ell% }=0,\\quad\\bigl{(}-(r(x)u_{xx}+\\kappa(x)u_{xxt})_{x}\\bigr{)}_{x=\\ell}=g(t),</jats:tex-math> </jats:alternatives> </jats:disp-formula> from the final time measured output (displacement) <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>T</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:=</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0260.png\" /> <jats:tex-math>{u_{T}(x):=u(x,T)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We introduce the input-output map <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo></m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:=</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo>;</m:mo> <m:mi>g</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0124.png\" /> <jats:tex-math>{(\\Phi g)(x):=u(x,T;g)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>g</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"script\">𝒢</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0230.png\" /> <jats:tex-math>{g\\in\\mathcal{G}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>J</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> <m:mo></m:mo> <m:msubsup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">∥</m:mo> <m:mrow> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo></m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo>-</m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>T</m:mi> </m:msub> </m:mrow> <m:mo fence=\"true\" stretchy=\"false\">∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0012.png\" /> <jats:tex-math>J(F)=\\frac{1}{2}\\lVert\\Phi g-u_{T}\\rVert_{L^{2}(0,\\ell)}^{2}</jats:tex-math> </jats:alternatives> </jats:disp-formula> and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Fréchet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"13 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of unknown shear force in transverse dynamic force microscopy from measured final data\",\"authors\":\"Onur Baysal, Alemdar Hasanov, Sakthivel Kumarasamy\",\"doi\":\"10.1515/jiip-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new methodology, based on the inverse problem approach, for the determination of an unknown shear force acting on the inaccessible tip of the microcantilever, which is a key component of <jats:italic>transverse dynamic force microscopy</jats:italic> (TDFM). The mathematical modelling of this phenomenon leads to the inverse problem of determining the shear force <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>g</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0228.png\\\" /> <jats:tex-math>{g(t)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> acting on the inaccessible boundary <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0276.png\\\" /> <jats:tex-math>{x=\\\\ell}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in a system governed by the variable coefficient Euler–Bernoulli equation <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>ρ</m:mi> <m:mi>A</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>t</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>t</m:mi> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\\\"12.5pt\\\">,</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0096.png\\\" /> <jats:tex-math>\\\\rho_{A}(x)u_{tt}+\\\\mu(x)u_{t}+(r(x)u_{xx}+\\\\kappa(x)u_{xxt})_{xx}=0,\\\\quad(x,t)% \\\\in(0,\\\\ell)\\\\times(0,T),</jats:tex-math> </jats:alternatives> </jats:disp-formula> subject to the homogeneous initial conditions and the boundary conditions <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo rspace=\\\"12.5pt\\\">,</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>x</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\\\"12.5pt\\\">,</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\\\"12.5pt\\\">,</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mo maxsize=\\\"120%\\\" minsize=\\\"120%\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>x</m:mi> </m:msub> </m:mrow> <m:mo maxsize=\\\"120%\\\" minsize=\\\"120%\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0104.png\\\" /> <jats:tex-math>u(0,t)=u_{0}(t),\\\\quad u_{x}(0,t)=0,\\\\quad(u_{xx}(x,t)+\\\\kappa(x)u_{xxt})_{x=\\\\ell% }=0,\\\\quad\\\\bigl{(}-(r(x)u_{xx}+\\\\kappa(x)u_{xxt})_{x}\\\\bigr{)}_{x=\\\\ell}=g(t),</jats:tex-math> </jats:alternatives> </jats:disp-formula> from the final time measured output (displacement) <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>T</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:=</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0260.png\\\" /> <jats:tex-math>{u_{T}(x):=u(x,T)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We introduce the input-output map <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo></m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:=</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo>;</m:mo> <m:mi>g</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0124.png\\\" /> <jats:tex-math>{(\\\\Phi g)(x):=u(x,T;g)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>g</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"script\\\">𝒢</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0230.png\\\" /> <jats:tex-math>{g\\\\in\\\\mathcal{G}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>J</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> <m:mo></m:mo> <m:msubsup> <m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">∥</m:mo> <m:mrow> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo></m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo>-</m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>T</m:mi> </m:msub> </m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0012.png\\\" /> <jats:tex-math>J(F)=\\\\frac{1}{2}\\\\lVert\\\\Phi g-u_{T}\\\\rVert_{L^{2}(0,\\\\ell)}^{2}</jats:tex-math> </jats:alternatives> </jats:disp-formula> and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Fréchet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2023-0021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们提出了一种基于反问题方法的新方法,用于确定作用于微悬臂梁不可接近尖端的未知剪切力,这是横向动态力显微镜(TDFM)的关键组成部分。这种现象的数学建模导致了一个反问题,即在一个由变系数欧拉-伯努利方程控制的系统中,确定作用在不可达边界{x= x=}{\ell}上的剪切力 g(t) g(t), ρ a (x)减去u t减去t + μ (x)减去u t + (r (x)减去u x减去x + κ (x)减去u x减去x减去t) x减去x= 0, (x, t)∈(0,l) × (0, t),\rho _A{(x)}u_tt{+ }\mu (x){u_t}+(r(x){u_xx}+ \kappa (x){u_xxt}){_xx}=0,\quad(x,t)% \in(0,\ell)\times(0,T), subject to the homogeneous initial conditions and the boundary conditions u ( 0 , t ) = u 0 ( t ) , u x ( 0 , t ) = 0 , ( u x x ( x , t ) + κ ( x ) u x x t ) x = ℓ = 0 , ( - ( r ( x ) u x x + κ ( x ) u x x t ) x ) x = ℓ = g ( t ) , u(0,t)=u_{0}(t),\quad u_{x}(0,t)=0,\quad(u_{xx}(x,t)+\kappa(x)u_{xxt})_{x=\ell% }=0,\quad\bigl{(}-(r(x)u_{xx}+\kappa(x)u_{xxt})_{x}\bigr{)}_{x=\ell}=g(t), from the final time measured output (displacement) u T ( x ) := u ( x , T ) {u_{T}(x):=u(x,T)} . We introduce the input-output map ( Φ g ) ( x ) := u ( x , T ; g ) {(\Phi g)(x):=u(x,T;g)} , g ∈ 𝒢 {g\in\mathcal{G}} , and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional J ( F ) = 1 2 ∥ Φ g - u T ∥ L 2 ( 0 , ℓ ) 2 J(F)=\frac{1}{2}\lVert\Phi g-u_{T}\rVert_{L^{2}(0,\ell)}^{2} and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Fréchet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.
Determination of unknown shear force in transverse dynamic force microscopy from measured final data
In this paper, we present a new methodology, based on the inverse problem approach, for the determination of an unknown shear force acting on the inaccessible tip of the microcantilever, which is a key component of transverse dynamic force microscopy (TDFM). The mathematical modelling of this phenomenon leads to the inverse problem of determining the shear force g(t){g(t)} acting on the inaccessible boundary x=ℓ{x=\ell} in a system governed by the variable coefficient Euler–Bernoulli equation ρA(x)utt+μ(x)ut+(r(x)uxx+κ(x)uxxt)xx=0,(x,t)∈(0,ℓ)×(0,T),\rho_{A}(x)u_{tt}+\mu(x)u_{t}+(r(x)u_{xx}+\kappa(x)u_{xxt})_{xx}=0,\quad(x,t)% \in(0,\ell)\times(0,T), subject to the homogeneous initial conditions and the boundary conditions u(0,t)=u0(t),ux(0,t)=0,(uxx(x,t)+κ(x)uxxt)x=ℓ=0,(-(r(x)uxx+κ(x)uxxt)x)x=ℓ=g(t),u(0,t)=u_{0}(t),\quad u_{x}(0,t)=0,\quad(u_{xx}(x,t)+\kappa(x)u_{xxt})_{x=\ell% }=0,\quad\bigl{(}-(r(x)u_{xx}+\kappa(x)u_{xxt})_{x}\bigr{)}_{x=\ell}=g(t), from the final time measured output (displacement) uT(x):=u(x,T){u_{T}(x):=u(x,T)}. We introduce the input-output map (Φg)(x):=u(x,T;g){(\Phi g)(x):=u(x,T;g)}, g∈𝒢{g\in\mathcal{G}}, and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional J(F)=12∥Φg-uT∥L2(0,ℓ)2J(F)=\frac{1}{2}\lVert\Phi g-u_{T}\rVert_{L^{2}(0,\ell)}^{2} and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Fréchet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography