从测量的最终数据确定横向动力显微镜中未知的剪切力

IF 0.9 4区 数学 Q2 MATHEMATICS
Onur Baysal, Alemdar Hasanov, Sakthivel Kumarasamy
{"title":"从测量的最终数据确定横向动力显微镜中未知的剪切力","authors":"Onur Baysal, Alemdar Hasanov, Sakthivel Kumarasamy","doi":"10.1515/jiip-2023-0021","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new methodology, based on the inverse problem approach, for the determination of an unknown shear force acting on the inaccessible tip of the microcantilever, which is a key component of <jats:italic>transverse dynamic force microscopy</jats:italic> (TDFM). The mathematical modelling of this phenomenon leads to the inverse problem of determining the shear force <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>g</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0228.png\" /> <jats:tex-math>{g(t)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> acting on the inaccessible boundary <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0276.png\" /> <jats:tex-math>{x=\\ell}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in a system governed by the variable coefficient Euler–Bernoulli equation <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>ρ</m:mi> <m:mi>A</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>t</m:mi> <m:mo>⁢</m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>t</m:mi> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0096.png\" /> <jats:tex-math>\\rho_{A}(x)u_{tt}+\\mu(x)u_{t}+(r(x)u_{xx}+\\kappa(x)u_{xxt})_{xx}=0,\\quad(x,t)% \\in(0,\\ell)\\times(0,T),</jats:tex-math> </jats:alternatives> </jats:disp-formula> subject to the homogeneous initial conditions and the boundary conditions <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>x</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>x</m:mi> </m:msub> </m:mrow> <m:mo maxsize=\"120%\" minsize=\"120%\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0104.png\" /> <jats:tex-math>u(0,t)=u_{0}(t),\\quad u_{x}(0,t)=0,\\quad(u_{xx}(x,t)+\\kappa(x)u_{xxt})_{x=\\ell% }=0,\\quad\\bigl{(}-(r(x)u_{xx}+\\kappa(x)u_{xxt})_{x}\\bigr{)}_{x=\\ell}=g(t),</jats:tex-math> </jats:alternatives> </jats:disp-formula> from the final time measured output (displacement) <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>T</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:=</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0260.png\" /> <jats:tex-math>{u_{T}(x):=u(x,T)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We introduce the input-output map <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:=</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo>;</m:mo> <m:mi>g</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0124.png\" /> <jats:tex-math>{(\\Phi g)(x):=u(x,T;g)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>g</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"script\">𝒢</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0230.png\" /> <jats:tex-math>{g\\in\\mathcal{G}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>J</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> <m:mo>⁢</m:mo> <m:msubsup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">∥</m:mo> <m:mrow> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo>-</m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>T</m:mi> </m:msub> </m:mrow> <m:mo fence=\"true\" stretchy=\"false\">∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0021_eq_0012.png\" /> <jats:tex-math>J(F)=\\frac{1}{2}\\lVert\\Phi g-u_{T}\\rVert_{L^{2}(0,\\ell)}^{2}</jats:tex-math> </jats:alternatives> </jats:disp-formula> and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Fréchet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"13 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of unknown shear force in transverse dynamic force microscopy from measured final data\",\"authors\":\"Onur Baysal, Alemdar Hasanov, Sakthivel Kumarasamy\",\"doi\":\"10.1515/jiip-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new methodology, based on the inverse problem approach, for the determination of an unknown shear force acting on the inaccessible tip of the microcantilever, which is a key component of <jats:italic>transverse dynamic force microscopy</jats:italic> (TDFM). The mathematical modelling of this phenomenon leads to the inverse problem of determining the shear force <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>g</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0228.png\\\" /> <jats:tex-math>{g(t)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> acting on the inaccessible boundary <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0276.png\\\" /> <jats:tex-math>{x=\\\\ell}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in a system governed by the variable coefficient Euler–Bernoulli equation <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>ρ</m:mi> <m:mi>A</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>t</m:mi> <m:mo>⁢</m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>t</m:mi> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\\\"12.5pt\\\">,</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0096.png\\\" /> <jats:tex-math>\\\\rho_{A}(x)u_{tt}+\\\\mu(x)u_{t}+(r(x)u_{xx}+\\\\kappa(x)u_{xxt})_{xx}=0,\\\\quad(x,t)% \\\\in(0,\\\\ell)\\\\times(0,T),</jats:tex-math> </jats:alternatives> </jats:disp-formula> subject to the homogeneous initial conditions and the boundary conditions <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo rspace=\\\"12.5pt\\\">,</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>x</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\\\"12.5pt\\\">,</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\\\"12.5pt\\\">,</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mo maxsize=\\\"120%\\\" minsize=\\\"120%\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> <m:mo>⁢</m:mo> <m:mi>t</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>x</m:mi> </m:msub> </m:mrow> <m:mo maxsize=\\\"120%\\\" minsize=\\\"120%\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0104.png\\\" /> <jats:tex-math>u(0,t)=u_{0}(t),\\\\quad u_{x}(0,t)=0,\\\\quad(u_{xx}(x,t)+\\\\kappa(x)u_{xxt})_{x=\\\\ell% }=0,\\\\quad\\\\bigl{(}-(r(x)u_{xx}+\\\\kappa(x)u_{xxt})_{x}\\\\bigr{)}_{x=\\\\ell}=g(t),</jats:tex-math> </jats:alternatives> </jats:disp-formula> from the final time measured output (displacement) <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mi>u</m:mi> <m:mi>T</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:=</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0260.png\\\" /> <jats:tex-math>{u_{T}(x):=u(x,T)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We introduce the input-output map <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:=</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo>;</m:mo> <m:mi>g</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0124.png\\\" /> <jats:tex-math>{(\\\\Phi g)(x):=u(x,T;g)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>g</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"script\\\">𝒢</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0230.png\\\" /> <jats:tex-math>{g\\\\in\\\\mathcal{G}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>J</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mn>2</m:mn> </m:mfrac> <m:mo>⁢</m:mo> <m:msubsup> <m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">∥</m:mo> <m:mrow> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mo>⁢</m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo>-</m:mo> <m:msub> <m:mi>u</m:mi> <m:mi>T</m:mi> </m:msub> </m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">∥</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2023-0021_eq_0012.png\\\" /> <jats:tex-math>J(F)=\\\\frac{1}{2}\\\\lVert\\\\Phi g-u_{T}\\\\rVert_{L^{2}(0,\\\\ell)}^{2}</jats:tex-math> </jats:alternatives> </jats:disp-formula> and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Fréchet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2023-0021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于反问题方法的新方法,用于确定作用于微悬臂梁不可接近尖端的未知剪切力,这是横向动态力显微镜(TDFM)的关键组成部分。这种现象的数学建模导致了一个反问题,即在一个由变系数欧拉-伯努利方程控制的系统中,确定作用在不可达边界{x= x=}{\ell}上的剪切力 g(t) g(t), ρ a (x)减去u t减去t + μ (x)减去u t + (r (x)减去u x减去x + κ (x)减去u x减去x减去t) x减去x= 0, (x, t)∈(0,l) × (0, t),\rho _A{(x)}u_tt{+ }\mu (x){u_t}+(r(x){u_xx}+ \kappa (x){u_xxt}){_xx}=0,\quad(x,t)% \in(0,\ell)\times(0,T), subject to the homogeneous initial conditions and the boundary conditions u ⁢ ( 0 , t ) = u 0 ⁢ ( t ) , u x ⁢ ( 0 , t ) = 0 , ( u x ⁢ x ⁢ ( x , t ) + κ ⁢ ( x ) ⁢ u x ⁢ x ⁢ t ) x = ℓ = 0 , ( - ( r ⁢ ( x ) ⁢ u x ⁢ x + κ ⁢ ( x ) ⁢ u x ⁢ x ⁢ t ) x ) x = ℓ = g ⁢ ( t ) , u(0,t)=u_{0}(t),\quad u_{x}(0,t)=0,\quad(u_{xx}(x,t)+\kappa(x)u_{xxt})_{x=\ell% }=0,\quad\bigl{(}-(r(x)u_{xx}+\kappa(x)u_{xxt})_{x}\bigr{)}_{x=\ell}=g(t), from the final time measured output (displacement) u T ⁢ ( x ) := u ⁢ ( x , T ) {u_{T}(x):=u(x,T)} . We introduce the input-output map ( Φ ⁢ g ) ⁢ ( x ) := u ⁢ ( x , T ; g ) {(\Phi g)(x):=u(x,T;g)} , g ∈ 𝒢 {g\in\mathcal{G}} , and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional J ⁢ ( F ) = 1 2 ⁢ ∥ Φ ⁢ g - u T ∥ L 2 ⁢ ( 0 , ℓ ) 2 J(F)=\frac{1}{2}\lVert\Phi g-u_{T}\rVert_{L^{2}(0,\ell)}^{2} and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Fréchet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of unknown shear force in transverse dynamic force microscopy from measured final data
In this paper, we present a new methodology, based on the inverse problem approach, for the determination of an unknown shear force acting on the inaccessible tip of the microcantilever, which is a key component of transverse dynamic force microscopy (TDFM). The mathematical modelling of this phenomenon leads to the inverse problem of determining the shear force g ( t ) {g(t)} acting on the inaccessible boundary x = {x=\ell} in a system governed by the variable coefficient Euler–Bernoulli equation ρ A ( x ) u t t + μ ( x ) u t + ( r ( x ) u x x + κ ( x ) u x x t ) x x = 0 , ( x , t ) ( 0 , ) × ( 0 , T ) , \rho_{A}(x)u_{tt}+\mu(x)u_{t}+(r(x)u_{xx}+\kappa(x)u_{xxt})_{xx}=0,\quad(x,t)% \in(0,\ell)\times(0,T), subject to the homogeneous initial conditions and the boundary conditions u ( 0 , t ) = u 0 ( t ) , u x ( 0 , t ) = 0 , ( u x x ( x , t ) + κ ( x ) u x x t ) x = = 0 , ( - ( r ( x ) u x x + κ ( x ) u x x t ) x ) x = = g ( t ) , u(0,t)=u_{0}(t),\quad u_{x}(0,t)=0,\quad(u_{xx}(x,t)+\kappa(x)u_{xxt})_{x=\ell% }=0,\quad\bigl{(}-(r(x)u_{xx}+\kappa(x)u_{xxt})_{x}\bigr{)}_{x=\ell}=g(t), from the final time measured output (displacement) u T ( x ) := u ( x , T ) {u_{T}(x):=u(x,T)} . We introduce the input-output map ( Φ g ) ( x ) := u ( x , T ; g ) {(\Phi g)(x):=u(x,T;g)} , g 𝒢 {g\in\mathcal{G}} , and prove that it is a compact and Lipschitz continuous linear operator. Then we introduce the Tikhonov functional J ( F ) = 1 2 Φ g - u T L 2 ( 0 , ) 2 J(F)=\frac{1}{2}\lVert\Phi g-u_{T}\rVert_{L^{2}(0,\ell)}^{2} and prove the existence of a quasi-solution of the inverse problem. We derive a gradient formula for the Fréchet gradient of the Tikhonov functional through the corresponding adjoint problem solution and prove that it is a Lipschitz continuous functional. The results of the numerical experiments clearly illustrate the effectiveness and feasibility of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信