{"title":"移动边缘计算中任务卸载的深度强化学习和马尔可夫决策问题","authors":"Xiaohu Gao, Mei Choo Ang, Sara A. Althubiti","doi":"10.1007/s10723-023-09708-4","DOIUrl":null,"url":null,"abstract":"<p>Mobile Edge Computing (MEC) offers cloud-like capabilities to mobile users, making it an up-and-coming method for advancing the Internet of Things (IoT). However, current approaches are limited by various factors such as network latency, bandwidth, energy consumption, task characteristics, and edge server overload. To address these limitations, this research propose a novel approach that integrates Deep Reinforcement Learning (DRL) with Deep Deterministic Policy Gradient (DDPG) and Markov Decision Problem for task offloading in MEC. Among DRL algorithms, the ITODDPG algorithm based on the DDPG algorithm and MDP is a popular choice for task offloading in MEC. Firstly, the ITODDPG algorithm formulates the task offloading problem in MEC as an MDP, which enables the agent to learn a policy that maximizes the expected cumulative reward. Secondly, ITODDPG employs a deep neural network to approximate the Q-function, which maps the state-action pairs to their expected cumulative rewards. Finally, the experimental results demonstrate that the ITODDPG algorithm outperforms the baseline algorithms regarding average compensation and convergence speed. In addition to its superior performance, our proposed approach can learn complex non-linear policies using DNN and an information-theoretic objective function to improve the performance of task offloading in MEC. Compared to traditional methods, our approach delivers improved performance, making it highly effective for developing IoT environments. Experimental trials were carried out, and the results indicate that the suggested approach can enhance performance compared to the other three baseline methods. It is highly scalable, capable of handling large and complex environments, and suitable for deployment in real-world scenarios, ensuring its widespread applicability to a diverse range of task offloading and MEC applications.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"37 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing\",\"authors\":\"Xiaohu Gao, Mei Choo Ang, Sara A. Althubiti\",\"doi\":\"10.1007/s10723-023-09708-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mobile Edge Computing (MEC) offers cloud-like capabilities to mobile users, making it an up-and-coming method for advancing the Internet of Things (IoT). However, current approaches are limited by various factors such as network latency, bandwidth, energy consumption, task characteristics, and edge server overload. To address these limitations, this research propose a novel approach that integrates Deep Reinforcement Learning (DRL) with Deep Deterministic Policy Gradient (DDPG) and Markov Decision Problem for task offloading in MEC. Among DRL algorithms, the ITODDPG algorithm based on the DDPG algorithm and MDP is a popular choice for task offloading in MEC. Firstly, the ITODDPG algorithm formulates the task offloading problem in MEC as an MDP, which enables the agent to learn a policy that maximizes the expected cumulative reward. Secondly, ITODDPG employs a deep neural network to approximate the Q-function, which maps the state-action pairs to their expected cumulative rewards. Finally, the experimental results demonstrate that the ITODDPG algorithm outperforms the baseline algorithms regarding average compensation and convergence speed. In addition to its superior performance, our proposed approach can learn complex non-linear policies using DNN and an information-theoretic objective function to improve the performance of task offloading in MEC. Compared to traditional methods, our approach delivers improved performance, making it highly effective for developing IoT environments. Experimental trials were carried out, and the results indicate that the suggested approach can enhance performance compared to the other three baseline methods. It is highly scalable, capable of handling large and complex environments, and suitable for deployment in real-world scenarios, ensuring its widespread applicability to a diverse range of task offloading and MEC applications.</p>\",\"PeriodicalId\":54817,\"journal\":{\"name\":\"Journal of Grid Computing\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grid Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-023-09708-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09708-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing
Mobile Edge Computing (MEC) offers cloud-like capabilities to mobile users, making it an up-and-coming method for advancing the Internet of Things (IoT). However, current approaches are limited by various factors such as network latency, bandwidth, energy consumption, task characteristics, and edge server overload. To address these limitations, this research propose a novel approach that integrates Deep Reinforcement Learning (DRL) with Deep Deterministic Policy Gradient (DDPG) and Markov Decision Problem for task offloading in MEC. Among DRL algorithms, the ITODDPG algorithm based on the DDPG algorithm and MDP is a popular choice for task offloading in MEC. Firstly, the ITODDPG algorithm formulates the task offloading problem in MEC as an MDP, which enables the agent to learn a policy that maximizes the expected cumulative reward. Secondly, ITODDPG employs a deep neural network to approximate the Q-function, which maps the state-action pairs to their expected cumulative rewards. Finally, the experimental results demonstrate that the ITODDPG algorithm outperforms the baseline algorithms regarding average compensation and convergence speed. In addition to its superior performance, our proposed approach can learn complex non-linear policies using DNN and an information-theoretic objective function to improve the performance of task offloading in MEC. Compared to traditional methods, our approach delivers improved performance, making it highly effective for developing IoT environments. Experimental trials were carried out, and the results indicate that the suggested approach can enhance performance compared to the other three baseline methods. It is highly scalable, capable of handling large and complex environments, and suitable for deployment in real-world scenarios, ensuring its widespread applicability to a diverse range of task offloading and MEC applications.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.