{"title":"云计算环境中微服务的自动伸缩方法","authors":"Matineh ZargarAzad, Mehrdad Ashtiani","doi":"10.1007/s10723-023-09713-7","DOIUrl":null,"url":null,"abstract":"<p>Recently, microservices have become a commonly-used architectural pattern for building cloud-native applications. Cloud computing provides flexibility for service providers, allowing them to remove or add resources depending on the workload of their web applications. If the resources allocated to the service are not aligned with its requirements, instances of failure or delayed response will increase, resulting in customer dissatisfaction. This problem has become a significant challenge in microservices-based applications, because thousands of microservices in the system may have complex interactions. Auto-scaling is a feature of cloud computing that enables resource scalability on demand, thus allowing service providers to deliver resources to their applications without human intervention under a dynamic workload to minimize resource cost and latency while maintaining the quality of service requirements. In this research, we aimed to establish a computational model for analyzing the workload of all microservices. To this end, the overall workload entering the system was considered, and the relationships and function calls between microservices were taken into account, because in a large-scale application with thousands of microservices, accurately monitoring all microservices and gathering precise performance metrics are usually difficult. Then, we developed a multi-criteria decision-making method to select the candidate microservices for scaling. We have tested the proposed approach with three datasets. The results of the conducted experiments show that the detection of input load toward microservices is performed with an average accuracy of about 99% which is a notable result. Furthermore, the proposed approach has demonstrated a substantial enhancement in resource utilization, achieving an average improvement of 40.74%, 20.28%, and 28.85% across three distinct datasets in comparison to existing methods. This is achieved by a notable reduction in the number of scaling operations, reducing the count by 54.40%, 55.52%, and 69.82%, respectively. Consequently, this optimization translates into a decrease in required resources, leading to cost reductions of 1.64%, 1.89%, and 1.67% respectively.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"17 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Auto-Scaling Approach for Microservices in Cloud Computing Environments\",\"authors\":\"Matineh ZargarAzad, Mehrdad Ashtiani\",\"doi\":\"10.1007/s10723-023-09713-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, microservices have become a commonly-used architectural pattern for building cloud-native applications. Cloud computing provides flexibility for service providers, allowing them to remove or add resources depending on the workload of their web applications. If the resources allocated to the service are not aligned with its requirements, instances of failure or delayed response will increase, resulting in customer dissatisfaction. This problem has become a significant challenge in microservices-based applications, because thousands of microservices in the system may have complex interactions. Auto-scaling is a feature of cloud computing that enables resource scalability on demand, thus allowing service providers to deliver resources to their applications without human intervention under a dynamic workload to minimize resource cost and latency while maintaining the quality of service requirements. In this research, we aimed to establish a computational model for analyzing the workload of all microservices. To this end, the overall workload entering the system was considered, and the relationships and function calls between microservices were taken into account, because in a large-scale application with thousands of microservices, accurately monitoring all microservices and gathering precise performance metrics are usually difficult. Then, we developed a multi-criteria decision-making method to select the candidate microservices for scaling. We have tested the proposed approach with three datasets. The results of the conducted experiments show that the detection of input load toward microservices is performed with an average accuracy of about 99% which is a notable result. Furthermore, the proposed approach has demonstrated a substantial enhancement in resource utilization, achieving an average improvement of 40.74%, 20.28%, and 28.85% across three distinct datasets in comparison to existing methods. This is achieved by a notable reduction in the number of scaling operations, reducing the count by 54.40%, 55.52%, and 69.82%, respectively. Consequently, this optimization translates into a decrease in required resources, leading to cost reductions of 1.64%, 1.89%, and 1.67% respectively.</p>\",\"PeriodicalId\":54817,\"journal\":{\"name\":\"Journal of Grid Computing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grid Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-023-09713-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09713-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An Auto-Scaling Approach for Microservices in Cloud Computing Environments
Recently, microservices have become a commonly-used architectural pattern for building cloud-native applications. Cloud computing provides flexibility for service providers, allowing them to remove or add resources depending on the workload of their web applications. If the resources allocated to the service are not aligned with its requirements, instances of failure or delayed response will increase, resulting in customer dissatisfaction. This problem has become a significant challenge in microservices-based applications, because thousands of microservices in the system may have complex interactions. Auto-scaling is a feature of cloud computing that enables resource scalability on demand, thus allowing service providers to deliver resources to their applications without human intervention under a dynamic workload to minimize resource cost and latency while maintaining the quality of service requirements. In this research, we aimed to establish a computational model for analyzing the workload of all microservices. To this end, the overall workload entering the system was considered, and the relationships and function calls between microservices were taken into account, because in a large-scale application with thousands of microservices, accurately monitoring all microservices and gathering precise performance metrics are usually difficult. Then, we developed a multi-criteria decision-making method to select the candidate microservices for scaling. We have tested the proposed approach with three datasets. The results of the conducted experiments show that the detection of input load toward microservices is performed with an average accuracy of about 99% which is a notable result. Furthermore, the proposed approach has demonstrated a substantial enhancement in resource utilization, achieving an average improvement of 40.74%, 20.28%, and 28.85% across three distinct datasets in comparison to existing methods. This is achieved by a notable reduction in the number of scaling operations, reducing the count by 54.40%, 55.52%, and 69.82%, respectively. Consequently, this optimization translates into a decrease in required resources, leading to cost reductions of 1.64%, 1.89%, and 1.67% respectively.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.