{"title":"关于定义Kripke框架的n密度或有界n宽度所需的不同变量的数量,以及Sahlqvist公式的一些结果","authors":"Petar Iliev","doi":"10.1093/jigpal/jzad026","DOIUrl":null,"url":null,"abstract":"We show that both the $n$-density and the bounded $n$-width of Kripke frames can be modally defined not only with natural and well-known Sahlqvist formulae containing a linear number of different propositional variables but also with formulae of polynomial length with a logarithmic number of different propositional variables and then we prove that this exponential decrease in the number of variables leads us outside the class of Sahlqvist formulae.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of different variables required to define the n-density or the bounded n-width of Kripke frames with some consequences for Sahlqvist formulae\",\"authors\":\"Petar Iliev\",\"doi\":\"10.1093/jigpal/jzad026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that both the $n$-density and the bounded $n$-width of Kripke frames can be modally defined not only with natural and well-known Sahlqvist formulae containing a linear number of different propositional variables but also with formulae of polynomial length with a logarithmic number of different propositional variables and then we prove that this exponential decrease in the number of variables leads us outside the class of Sahlqvist formulae.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzad026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the number of different variables required to define the n-density or the bounded n-width of Kripke frames with some consequences for Sahlqvist formulae
We show that both the $n$-density and the bounded $n$-width of Kripke frames can be modally defined not only with natural and well-known Sahlqvist formulae containing a linear number of different propositional variables but also with formulae of polynomial length with a logarithmic number of different propositional variables and then we prove that this exponential decrease in the number of variables leads us outside the class of Sahlqvist formulae.