关于定义Kripke框架的n密度或有界n宽度所需的不同变量的数量,以及Sahlqvist公式的一些结果

Pub Date : 2023-11-20 DOI:10.1093/jigpal/jzad026
Petar Iliev
{"title":"关于定义Kripke框架的n密度或有界n宽度所需的不同变量的数量,以及Sahlqvist公式的一些结果","authors":"Petar Iliev","doi":"10.1093/jigpal/jzad026","DOIUrl":null,"url":null,"abstract":"We show that both the $n$-density and the bounded $n$-width of Kripke frames can be modally defined not only with natural and well-known Sahlqvist formulae containing a linear number of different propositional variables but also with formulae of polynomial length with a logarithmic number of different propositional variables and then we prove that this exponential decrease in the number of variables leads us outside the class of Sahlqvist formulae.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of different variables required to define the n-density or the bounded n-width of Kripke frames with some consequences for Sahlqvist formulae\",\"authors\":\"Petar Iliev\",\"doi\":\"10.1093/jigpal/jzad026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that both the $n$-density and the bounded $n$-width of Kripke frames can be modally defined not only with natural and well-known Sahlqvist formulae containing a linear number of different propositional variables but also with formulae of polynomial length with a logarithmic number of different propositional variables and then we prove that this exponential decrease in the number of variables leads us outside the class of Sahlqvist formulae.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzad026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了Kripke框架的n$-密度和有界的n$-宽度不仅可以用自然的和众所周知的包含线性数量不同命题变量的Sahlqvist公式,而且可以用包含对数数量不同命题变量的多项式长度公式进行模态定义,然后我们证明了这种变量数量的指数减少使我们超出了Sahlqvist公式的范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the number of different variables required to define the n-density or the bounded n-width of Kripke frames with some consequences for Sahlqvist formulae
We show that both the $n$-density and the bounded $n$-width of Kripke frames can be modally defined not only with natural and well-known Sahlqvist formulae containing a linear number of different propositional variables but also with formulae of polynomial length with a logarithmic number of different propositional variables and then we prove that this exponential decrease in the number of variables leads us outside the class of Sahlqvist formulae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信