{"title":"用局部谱理论求解上三角线性关系矩阵的谱","authors":"Teresa Álvarez, Sonia Keskes","doi":"10.1007/s00010-023-00993-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> and <i>Y</i> be Banach spaces. When <i>A</i> and <i>B</i> are linear relations in <i>X</i> and <i>Y</i>, respectively, we denote by <span>\\(M_{C}\\)</span> the linear relation in <span>\\(X\\times Y\\)</span> of the form <span>\\(\\left( \\begin{array}{cc} A &{} C \\\\ 0 &{} B \\\\ \\end{array} \\right) \\)</span>, where 0 is the zero operator from <i>X</i> to <i>Y</i> and <i>C</i> is a bounded operator from <i>Y</i> to <i>X</i>. In this paper, by using properties of the SVEP, we study the defect set <span>\\((\\Sigma (A)\\cup \\Sigma (B))\\backslash \\Sigma (M_{C})\\)</span>, where <span>\\(\\Sigma \\)</span> is the spectrum, the approximate point spectrum, the surjective spectrum, the Fredholm spectrum, the Weyl spectrum, the Browder spectrum, the generalized Drazin spectrum and the Drazin spectrum.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 2","pages":"399 - 422"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectra for upper triangular linear relation matrices through local spectral theory\",\"authors\":\"Teresa Álvarez, Sonia Keskes\",\"doi\":\"10.1007/s00010-023-00993-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> and <i>Y</i> be Banach spaces. When <i>A</i> and <i>B</i> are linear relations in <i>X</i> and <i>Y</i>, respectively, we denote by <span>\\\\(M_{C}\\\\)</span> the linear relation in <span>\\\\(X\\\\times Y\\\\)</span> of the form <span>\\\\(\\\\left( \\\\begin{array}{cc} A &{} C \\\\\\\\ 0 &{} B \\\\\\\\ \\\\end{array} \\\\right) \\\\)</span>, where 0 is the zero operator from <i>X</i> to <i>Y</i> and <i>C</i> is a bounded operator from <i>Y</i> to <i>X</i>. In this paper, by using properties of the SVEP, we study the defect set <span>\\\\((\\\\Sigma (A)\\\\cup \\\\Sigma (B))\\\\backslash \\\\Sigma (M_{C})\\\\)</span>, where <span>\\\\(\\\\Sigma \\\\)</span> is the spectrum, the approximate point spectrum, the surjective spectrum, the Fredholm spectrum, the Weyl spectrum, the Browder spectrum, the generalized Drazin spectrum and the Drazin spectrum.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"98 2\",\"pages\":\"399 - 422\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-023-00993-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-023-00993-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设X和Y是巴拿赫空间。当A和B分别是X和Y中的线性关系时,我们用\(M_{C}\)表示\(X\times Y\)中的线性关系,其形式为\(\left( \begin{array}{cc} A &{} C \\ 0 &{} B \\ \end{array} \right) \),其中0是X到Y的零算子,C是Y到X的有界算子。本文利用SVEP的性质,研究了缺陷集\((\Sigma (A)\cup \Sigma (B))\backslash \Sigma (M_{C})\),其中\(\Sigma \)是谱,近似点谱,满射谱,Fredholm谱,Weyl谱,Browder谱,广义Drazin谱和Drazin谱。
Spectra for upper triangular linear relation matrices through local spectral theory
Let X and Y be Banach spaces. When A and B are linear relations in X and Y, respectively, we denote by \(M_{C}\) the linear relation in \(X\times Y\) of the form \(\left( \begin{array}{cc} A &{} C \\ 0 &{} B \\ \end{array} \right) \), where 0 is the zero operator from X to Y and C is a bounded operator from Y to X. In this paper, by using properties of the SVEP, we study the defect set \((\Sigma (A)\cup \Sigma (B))\backslash \Sigma (M_{C})\), where \(\Sigma \) is the spectrum, the approximate point spectrum, the surjective spectrum, the Fredholm spectrum, the Weyl spectrum, the Browder spectrum, the generalized Drazin spectrum and the Drazin spectrum.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.