Julian Rossbroich, Jeffrey Durieux, Tom F. Wilderjans
{"title":"加法重叠分割聚类中确定最优重叠簇数的模型选择策略","authors":"Julian Rossbroich, Jeffrey Durieux, Tom F. Wilderjans","doi":"10.1007/s00357-021-09409-1","DOIUrl":null,"url":null,"abstract":"<p>In various scientific fields, researchers make use of partitioning methods (e.g., <i>K</i>-means) to disclose the structural mechanisms underlying object by variable data. In some instances, however, a grouping of objects into clusters that are allowed to overlap (i.e., assigning objects to multiple clusters) might lead to a better representation of the underlying clustering structure. To obtain an overlapping object clustering from object by variable data, Mirkin’s ADditive PROfile CLUStering (ADPROCLUS) model may be used. A major challenge when performing ADPROCLUS is to determine the optimal number of overlapping clusters underlying the data, which pertains to a model selection problem. Up to now, however, this problem has not been systematically investigated and almost no guidelines can be found in the literature regarding appropriate model selection strategies for ADPROCLUS. Therefore, in this paper, several existing model selection strategies for <i>K</i>-means (a.o., CHull, the Caliński-Harabasz, Krzanowski-Lai, Average Silhouette Width and Dunn Index and information-theoretic measures like AIC and BIC) and two cross-validation based strategies are tailored towards an ADPROCLUS context and are compared to each other in an extensive simulation study. The results demonstrate that CHull outperforms all other model selection strategies and this especially when the negative log-likelihood, which is associated with a minimal stochastic extension of ADPROCLUS, is used as (mis)fit measure. The analysis of a post hoc AIC-based model selection strategy revealed that better performance may be obtained when a different—more appropriate—definition of model complexity for ADPROCLUS is used.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"28 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering\",\"authors\":\"Julian Rossbroich, Jeffrey Durieux, Tom F. Wilderjans\",\"doi\":\"10.1007/s00357-021-09409-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In various scientific fields, researchers make use of partitioning methods (e.g., <i>K</i>-means) to disclose the structural mechanisms underlying object by variable data. In some instances, however, a grouping of objects into clusters that are allowed to overlap (i.e., assigning objects to multiple clusters) might lead to a better representation of the underlying clustering structure. To obtain an overlapping object clustering from object by variable data, Mirkin’s ADditive PROfile CLUStering (ADPROCLUS) model may be used. A major challenge when performing ADPROCLUS is to determine the optimal number of overlapping clusters underlying the data, which pertains to a model selection problem. Up to now, however, this problem has not been systematically investigated and almost no guidelines can be found in the literature regarding appropriate model selection strategies for ADPROCLUS. Therefore, in this paper, several existing model selection strategies for <i>K</i>-means (a.o., CHull, the Caliński-Harabasz, Krzanowski-Lai, Average Silhouette Width and Dunn Index and information-theoretic measures like AIC and BIC) and two cross-validation based strategies are tailored towards an ADPROCLUS context and are compared to each other in an extensive simulation study. The results demonstrate that CHull outperforms all other model selection strategies and this especially when the negative log-likelihood, which is associated with a minimal stochastic extension of ADPROCLUS, is used as (mis)fit measure. The analysis of a post hoc AIC-based model selection strategy revealed that better performance may be obtained when a different—more appropriate—definition of model complexity for ADPROCLUS is used.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-021-09409-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-021-09409-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering
In various scientific fields, researchers make use of partitioning methods (e.g., K-means) to disclose the structural mechanisms underlying object by variable data. In some instances, however, a grouping of objects into clusters that are allowed to overlap (i.e., assigning objects to multiple clusters) might lead to a better representation of the underlying clustering structure. To obtain an overlapping object clustering from object by variable data, Mirkin’s ADditive PROfile CLUStering (ADPROCLUS) model may be used. A major challenge when performing ADPROCLUS is to determine the optimal number of overlapping clusters underlying the data, which pertains to a model selection problem. Up to now, however, this problem has not been systematically investigated and almost no guidelines can be found in the literature regarding appropriate model selection strategies for ADPROCLUS. Therefore, in this paper, several existing model selection strategies for K-means (a.o., CHull, the Caliński-Harabasz, Krzanowski-Lai, Average Silhouette Width and Dunn Index and information-theoretic measures like AIC and BIC) and two cross-validation based strategies are tailored towards an ADPROCLUS context and are compared to each other in an extensive simulation study. The results demonstrate that CHull outperforms all other model selection strategies and this especially when the negative log-likelihood, which is associated with a minimal stochastic extension of ADPROCLUS, is used as (mis)fit measure. The analysis of a post hoc AIC-based model selection strategy revealed that better performance may be obtained when a different—more appropriate—definition of model complexity for ADPROCLUS is used.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.