异构数据的聚类稀疏结构方程建模

IF 1.8 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ippei Takasawa, Kensuke Tanioka, Hiroshi Yadohisa
{"title":"异构数据的聚类稀疏结构方程建模","authors":"Ippei Takasawa, Kensuke Tanioka, Hiroshi Yadohisa","doi":"10.1007/s00357-023-09449-9","DOIUrl":null,"url":null,"abstract":"<p>Joint analysis with clustering and structural equation modeling is one of the most popular approaches to analyzing heterogeneous data. The methods involved in this approach estimate a path diagram of the same shape for each cluster and interpret the clusters according to the magnitude of the coefficients. However, these methods have problems with difficulty in interpreting the coefficients when the number of clusters and/or paths increases and are unable to deal with any situation where the path diagram for each cluster is different. To tackle these problems, we propose two methods for simplifying the path structure and facilitating interpretation by estimating a different form of path diagram for each cluster using sparse estimation. The proposed methods and related methods are compared using numerical simulation and real data examples. The proposed methods are superior to the existing methods in terms of both fitting and interpretation.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"199 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustered Sparse Structural Equation Modeling for Heterogeneous Data\",\"authors\":\"Ippei Takasawa, Kensuke Tanioka, Hiroshi Yadohisa\",\"doi\":\"10.1007/s00357-023-09449-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Joint analysis with clustering and structural equation modeling is one of the most popular approaches to analyzing heterogeneous data. The methods involved in this approach estimate a path diagram of the same shape for each cluster and interpret the clusters according to the magnitude of the coefficients. However, these methods have problems with difficulty in interpreting the coefficients when the number of clusters and/or paths increases and are unable to deal with any situation where the path diagram for each cluster is different. To tackle these problems, we propose two methods for simplifying the path structure and facilitating interpretation by estimating a different form of path diagram for each cluster using sparse estimation. The proposed methods and related methods are compared using numerical simulation and real data examples. The proposed methods are superior to the existing methods in terms of both fitting and interpretation.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-023-09449-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-023-09449-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

结合聚类和结构方程建模的联合分析是分析异构数据最常用的方法之一。该方法所涉及的方法为每个簇估计相同形状的路径图,并根据系数的大小解释簇。然而,当簇和/或路径数量增加时,这些方法在解释系数时存在困难,并且无法处理每个簇的路径图不同的任何情况。为了解决这些问题,我们提出了两种方法来简化路径结构,并通过使用稀疏估计对每个聚类估计不同形式的路径图来促进解释。通过数值模拟和实际数据算例对所提方法和相关方法进行了比较。本文提出的方法在拟合和解释方面都优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Clustered Sparse Structural Equation Modeling for Heterogeneous Data

Clustered Sparse Structural Equation Modeling for Heterogeneous Data

Joint analysis with clustering and structural equation modeling is one of the most popular approaches to analyzing heterogeneous data. The methods involved in this approach estimate a path diagram of the same shape for each cluster and interpret the clusters according to the magnitude of the coefficients. However, these methods have problems with difficulty in interpreting the coefficients when the number of clusters and/or paths increases and are unable to deal with any situation where the path diagram for each cluster is different. To tackle these problems, we propose two methods for simplifying the path structure and facilitating interpretation by estimating a different form of path diagram for each cluster using sparse estimation. The proposed methods and related methods are compared using numerical simulation and real data examples. The proposed methods are superior to the existing methods in terms of both fitting and interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Classification
Journal of Classification 数学-数学跨学科应用
CiteScore
3.60
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信