关于r熵的完全单调猜想

Hao Wu, Lei Yu, Laigang Guo
{"title":"关于r<s:1>熵的完全单调猜想","authors":"Hao Wu, Lei Yu, Laigang Guo","doi":"arxiv-2312.01819","DOIUrl":null,"url":null,"abstract":"In this paper, we generalize the completely monotone conjecture from Shannon\nentropy to the R\\'enyi entropy. We confirm this conjecture for the order of\nderivative up to $3$, when the order of R\\'enyi entropy is in certain regimes.\nWe also investigate concavity of R\\'enyi entropy power and the completely\nmonotone conjecture for Tsallis entropy. We observe that the completely\nmonotone conjecture is true for Tsallis entropy of order $2$. Our proofs in\nthis paper are based on the techniques of integration-by-parts and\nsum-of-squares.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Completely Monotone Conjecture for Rényi Entropy\",\"authors\":\"Hao Wu, Lei Yu, Laigang Guo\",\"doi\":\"arxiv-2312.01819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we generalize the completely monotone conjecture from Shannon\\nentropy to the R\\\\'enyi entropy. We confirm this conjecture for the order of\\nderivative up to $3$, when the order of R\\\\'enyi entropy is in certain regimes.\\nWe also investigate concavity of R\\\\'enyi entropy power and the completely\\nmonotone conjecture for Tsallis entropy. We observe that the completely\\nmonotone conjecture is true for Tsallis entropy of order $2$. Our proofs in\\nthis paper are based on the techniques of integration-by-parts and\\nsum-of-squares.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.01819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.01819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将香农熵的完全单调猜想推广到R\ enyi熵。当R\ enyi熵的阶数在一定范围内时,我们证实了这一猜想。我们还研究了R′enyi熵幂的凹性和Tsallis熵的完全单调猜想。我们观察到,对于2阶的Tsallis熵,完全单调猜想是成立的。本文的证明是基于分部积分和平方和的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Completely Monotone Conjecture for Rényi Entropy
In this paper, we generalize the completely monotone conjecture from Shannon entropy to the R\'enyi entropy. We confirm this conjecture for the order of derivative up to $3$, when the order of R\'enyi entropy is in certain regimes. We also investigate concavity of R\'enyi entropy power and the completely monotone conjecture for Tsallis entropy. We observe that the completely monotone conjecture is true for Tsallis entropy of order $2$. Our proofs in this paper are based on the techniques of integration-by-parts and sum-of-squares.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信