虚拟量子马尔可夫链

Yu-Ao Chen, Chengkai Zhu, Keming He, Mingrui Jing, Xin Wang
{"title":"虚拟量子马尔可夫链","authors":"Yu-Ao Chen, Chengkai Zhu, Keming He, Mingrui Jing, Xin Wang","doi":"arxiv-2312.02031","DOIUrl":null,"url":null,"abstract":"Quantum Markov chains generalize classical Markov chains for random variables\nto the quantum realm and exhibit unique inherent properties, making them an\nimportant feature in quantum information theory. In this work, we propose the\nconcept of virtual quantum Markov chains (VQMCs), focusing on scenarios where\nsubsystems retain classical information about global systems from measurement\nstatistics. As a generalization of quantum Markov chains, VQMCs characterize\nstates where arbitrary global shadow information can be recovered from\nsubsystems through local quantum operations and measurements. We present an\nalgebraic characterization for virtual quantum Markov chains and show that the\nvirtual quantum recovery is fully determined by the block matrices of a quantum\nstate on its subsystems. Notably, we find a distinction between two classes of\ntripartite entanglement by showing that the W state is a VQMC while the GHZ\nstate is not. Furthermore, we establish semidefinite programs to determine the\noptimal sampling overhead and the robustness of virtual quantum Markov chains.\nWe demonstrate the optimal sampling overhead is additive, indicating no free\nlunch to further reduce the sampling cost of recovery from parallel calls of\nthe VQMC states. Our findings elucidate distinctions between quantum Markov\nchains and virtual quantum Markov chains, extending our understanding of\nquantum recovery to scenarios prioritizing classical information from\nmeasurement statistics.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Quantum Markov Chains\",\"authors\":\"Yu-Ao Chen, Chengkai Zhu, Keming He, Mingrui Jing, Xin Wang\",\"doi\":\"arxiv-2312.02031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum Markov chains generalize classical Markov chains for random variables\\nto the quantum realm and exhibit unique inherent properties, making them an\\nimportant feature in quantum information theory. In this work, we propose the\\nconcept of virtual quantum Markov chains (VQMCs), focusing on scenarios where\\nsubsystems retain classical information about global systems from measurement\\nstatistics. As a generalization of quantum Markov chains, VQMCs characterize\\nstates where arbitrary global shadow information can be recovered from\\nsubsystems through local quantum operations and measurements. We present an\\nalgebraic characterization for virtual quantum Markov chains and show that the\\nvirtual quantum recovery is fully determined by the block matrices of a quantum\\nstate on its subsystems. Notably, we find a distinction between two classes of\\ntripartite entanglement by showing that the W state is a VQMC while the GHZ\\nstate is not. Furthermore, we establish semidefinite programs to determine the\\noptimal sampling overhead and the robustness of virtual quantum Markov chains.\\nWe demonstrate the optimal sampling overhead is additive, indicating no free\\nlunch to further reduce the sampling cost of recovery from parallel calls of\\nthe VQMC states. Our findings elucidate distinctions between quantum Markov\\nchains and virtual quantum Markov chains, extending our understanding of\\nquantum recovery to scenarios prioritizing classical information from\\nmeasurement statistics.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子马尔可夫链将随机变量的经典马尔可夫链推广到量子领域,并表现出独特的固有性质,是量子信息论的重要特征。在这项工作中,我们提出了虚拟量子马尔可夫链(vqmc)的概念,重点关注子系统从测量统计中保留全局系统经典信息的场景。作为量子马尔可夫链的一种推广,vqmc的特征是通过局部量子操作和测量可以从子系统中恢复任意全局阴影信息。我们给出了虚量子马尔可夫链的代数表征,并证明了虚量子恢复完全由子系统上量子态的块矩阵决定。值得注意的是,我们发现了两类三方纠缠的区别,表明W态是VQMC,而GHZstate不是。在此基础上,我们建立了半定规划来确定虚拟量子马尔可夫链的最优采样开销和鲁棒性。我们证明了最优采样开销是加性的,表明没有自由启动,以进一步降低从VQMC状态的并行调用中恢复的采样成本。我们的研究结果阐明了量子马尔可夫链和虚拟量子马尔可夫链之间的区别,将我们对量子恢复的理解扩展到从测量统计中优先考虑经典信息的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual Quantum Markov Chains
Quantum Markov chains generalize classical Markov chains for random variables to the quantum realm and exhibit unique inherent properties, making them an important feature in quantum information theory. In this work, we propose the concept of virtual quantum Markov chains (VQMCs), focusing on scenarios where subsystems retain classical information about global systems from measurement statistics. As a generalization of quantum Markov chains, VQMCs characterize states where arbitrary global shadow information can be recovered from subsystems through local quantum operations and measurements. We present an algebraic characterization for virtual quantum Markov chains and show that the virtual quantum recovery is fully determined by the block matrices of a quantum state on its subsystems. Notably, we find a distinction between two classes of tripartite entanglement by showing that the W state is a VQMC while the GHZ state is not. Furthermore, we establish semidefinite programs to determine the optimal sampling overhead and the robustness of virtual quantum Markov chains. We demonstrate the optimal sampling overhead is additive, indicating no free lunch to further reduce the sampling cost of recovery from parallel calls of the VQMC states. Our findings elucidate distinctions between quantum Markov chains and virtual quantum Markov chains, extending our understanding of quantum recovery to scenarios prioritizing classical information from measurement statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信