Amit Sharma, Ekansh Chauhan, Megha S Uppin, Rajasekhar Liza, C.V. Jawahar, P K Vinod
{"title":"狼疮性肾炎亚型分型,仅以幻灯片标示","authors":"Amit Sharma, Ekansh Chauhan, Megha S Uppin, Rajasekhar Liza, C.V. Jawahar, P K Vinod","doi":"10.1101/2023.12.03.23299357","DOIUrl":null,"url":null,"abstract":"Lupus Nephritis classification has historically relied on labor-intensive and meticulous glomerular-level labeling of renal structures in whole slide images (WSIs). However, this approach presents a formidable challenge due to its tedious and resource-intensive nature, limiting its scalability and practicality in clinical settings. In response to this challenge, our work introduces a novel methodology that utilizes only slide-level labels, eliminating the need for granular glomerular-level labeling. A comprehensive multi-stained lupus nephritis digital histopathology WSI dataset was created from the Indian population, which is the largest of its kind. LupusNet, a deep learning MIL-based model, was developed for the subtype classification of LN. The results underscore its effectiveness, achieving an AUC score of 91.0%, an F1-score of 77.3%, and an accuracy of 81.1% on our dataset in distinguishing membranous and diffused classes of LN.","PeriodicalId":501513,"journal":{"name":"medRxiv - Nephrology","volume":"21 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LUPUS NEPHRITIS SUBTYPE CLASSIFICATION WITH ONLY SLIDE LEVEL LABELS\",\"authors\":\"Amit Sharma, Ekansh Chauhan, Megha S Uppin, Rajasekhar Liza, C.V. Jawahar, P K Vinod\",\"doi\":\"10.1101/2023.12.03.23299357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lupus Nephritis classification has historically relied on labor-intensive and meticulous glomerular-level labeling of renal structures in whole slide images (WSIs). However, this approach presents a formidable challenge due to its tedious and resource-intensive nature, limiting its scalability and practicality in clinical settings. In response to this challenge, our work introduces a novel methodology that utilizes only slide-level labels, eliminating the need for granular glomerular-level labeling. A comprehensive multi-stained lupus nephritis digital histopathology WSI dataset was created from the Indian population, which is the largest of its kind. LupusNet, a deep learning MIL-based model, was developed for the subtype classification of LN. The results underscore its effectiveness, achieving an AUC score of 91.0%, an F1-score of 77.3%, and an accuracy of 81.1% on our dataset in distinguishing membranous and diffused classes of LN.\",\"PeriodicalId\":501513,\"journal\":{\"name\":\"medRxiv - Nephrology\",\"volume\":\"21 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.12.03.23299357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.12.03.23299357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LUPUS NEPHRITIS SUBTYPE CLASSIFICATION WITH ONLY SLIDE LEVEL LABELS
Lupus Nephritis classification has historically relied on labor-intensive and meticulous glomerular-level labeling of renal structures in whole slide images (WSIs). However, this approach presents a formidable challenge due to its tedious and resource-intensive nature, limiting its scalability and practicality in clinical settings. In response to this challenge, our work introduces a novel methodology that utilizes only slide-level labels, eliminating the need for granular glomerular-level labeling. A comprehensive multi-stained lupus nephritis digital histopathology WSI dataset was created from the Indian population, which is the largest of its kind. LupusNet, a deep learning MIL-based model, was developed for the subtype classification of LN. The results underscore its effectiveness, achieving an AUC score of 91.0%, an F1-score of 77.3%, and an accuracy of 81.1% on our dataset in distinguishing membranous and diffused classes of LN.