准分数驱动模型的波动率预测及其在冠状病毒大流行期的应用

Astrid Ayala, Szabolcs Blazsek, Adrian Licht
{"title":"准分数驱动模型的波动率预测及其在冠状病毒大流行期的应用","authors":"Astrid Ayala, Szabolcs Blazsek, Adrian Licht","doi":"10.1515/snde-2022-0085","DOIUrl":null,"url":null,"abstract":"We study the statistical and volatility forecasting performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive conditional heteroscedasticity) models. We compare the quasi-score-driven EGARCH models with GARCH, asymmetric power ARCH (A-PARCH), and all relevant score-driven EGARCH models of the literature. For score-driven and quasi-score-driven EGARCH, we use the following seven score-driven probability distributions: Student’s <jats:italic>t</jats:italic>-distribution; general error distribution (GED); generalized <jats:italic>t</jats:italic>-distribution (Gen-<jats:italic>t</jats:italic>); skewed generalized <jats:italic>t</jats:italic>-distribution (Skew-Gen-<jats:italic>t</jats:italic>); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). We use all combinations of those distributions for (i) the probability distribution of the dependent variable, and (ii) the probability distribution which defines the quasi-score function updating term of the quasi-score-driven filters. We use daily data for the Standard &amp; Poor’s 500 (S&amp;P 500) index. We find that both in-sample and out-of-sample, quasi-score-driven EGARCH is superior to GARCH, A-PARCH, and score-driven EGARCH. We report in-sample results for the period of January 2000 to December 2020, providing evidence in favor of the quasi-score-driven EGARCH model for the last two decades. We report out-of-sample volatility forecasting results for a period within the coronavirus disease 2019 (COVID-19) pandemic, providing evidence in favor of the quasi-score-driven EGARCH model for a crisis period.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"35 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatility Forecasting Using Quasi-Score-Driven Models with an Application to the Coronavirus Pandemic Period\",\"authors\":\"Astrid Ayala, Szabolcs Blazsek, Adrian Licht\",\"doi\":\"10.1515/snde-2022-0085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the statistical and volatility forecasting performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive conditional heteroscedasticity) models. We compare the quasi-score-driven EGARCH models with GARCH, asymmetric power ARCH (A-PARCH), and all relevant score-driven EGARCH models of the literature. For score-driven and quasi-score-driven EGARCH, we use the following seven score-driven probability distributions: Student’s <jats:italic>t</jats:italic>-distribution; general error distribution (GED); generalized <jats:italic>t</jats:italic>-distribution (Gen-<jats:italic>t</jats:italic>); skewed generalized <jats:italic>t</jats:italic>-distribution (Skew-Gen-<jats:italic>t</jats:italic>); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). We use all combinations of those distributions for (i) the probability distribution of the dependent variable, and (ii) the probability distribution which defines the quasi-score function updating term of the quasi-score-driven filters. We use daily data for the Standard &amp; Poor’s 500 (S&amp;P 500) index. We find that both in-sample and out-of-sample, quasi-score-driven EGARCH is superior to GARCH, A-PARCH, and score-driven EGARCH. We report in-sample results for the period of January 2000 to December 2020, providing evidence in favor of the quasi-score-driven EGARCH model for the last two decades. We report out-of-sample volatility forecasting results for a period within the coronavirus disease 2019 (COVID-19) pandemic, providing evidence in favor of the quasi-score-driven EGARCH model for a crisis period.\",\"PeriodicalId\":501448,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics & Econometrics\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics & Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2022-0085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2022-0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了最近的准分数驱动的EGARCH(指数广义自回归条件异方差)模型的统计和波动性预测性能。我们将准分数驱动的EGARCH模型与GARCH、不对称权力ARCH (A-PARCH)和所有相关的分数驱动的EGARCH模型进行了比较。对于分数驱动和准分数驱动的EGARCH,我们使用以下7个分数驱动的概率分布:学生t分布;一般误差分布(GED);广义t分布(Gen-t);偏态广义t分布;第二类指数广义beta分布(EGB2);正态-逆高斯分布;梅克纳分布(MXN)。我们将这些分布的所有组合用于(i)因变量的概率分布,以及(ii)定义准分数驱动滤波器的准分数函数更新项的概率分布。我们使用每日数据作为标准。标准普尔500指数。我们发现样本内和样本外、准分数驱动的EGARCH都优于GARCH、A-PARCH和分数驱动的EGARCH。我们报告了2000年1月至2020年12月期间的样本内结果,为过去20年的准分数驱动EGARCH模型提供了支持的证据。我们报告了2019冠状病毒病(COVID-19)大流行期间的样本外波动率预测结果,为危机时期的准分数驱动EGARCH模型提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volatility Forecasting Using Quasi-Score-Driven Models with an Application to the Coronavirus Pandemic Period
We study the statistical and volatility forecasting performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive conditional heteroscedasticity) models. We compare the quasi-score-driven EGARCH models with GARCH, asymmetric power ARCH (A-PARCH), and all relevant score-driven EGARCH models of the literature. For score-driven and quasi-score-driven EGARCH, we use the following seven score-driven probability distributions: Student’s t-distribution; general error distribution (GED); generalized t-distribution (Gen-t); skewed generalized t-distribution (Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). We use all combinations of those distributions for (i) the probability distribution of the dependent variable, and (ii) the probability distribution which defines the quasi-score function updating term of the quasi-score-driven filters. We use daily data for the Standard & Poor’s 500 (S&P 500) index. We find that both in-sample and out-of-sample, quasi-score-driven EGARCH is superior to GARCH, A-PARCH, and score-driven EGARCH. We report in-sample results for the period of January 2000 to December 2020, providing evidence in favor of the quasi-score-driven EGARCH model for the last two decades. We report out-of-sample volatility forecasting results for a period within the coronavirus disease 2019 (COVID-19) pandemic, providing evidence in favor of the quasi-score-driven EGARCH model for a crisis period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信