{"title":"简便灵敏的乙炔黑基电化学传感器检测伊马替尼","authors":"Shun Li, Qingwu Tian, Xuanming Xu, Chao Xuan, Xiaomin Yang, Shukai Sun, Tingting Zhou","doi":"10.1155/2023/3228470","DOIUrl":null,"url":null,"abstract":"A facile and sensitive electrochemical sensor for determining imatinib (IMA) was constructed by modifying a glassy carbon electrode (GCE) with a nanocarbon material, acetylene black (AB). The electrochemical behavior of IMA on the prepared GCE/AB was studied using electrochemical techniques, namely, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy. The direct determination of IMA by the GCE/AB sensor was accomplished using DPV under optimized conditions. The method verification showed that the oxidation peak current was proportional to the concentrations of IMA in the linear ranges of 0.01–0.5 and 0.5–4 <i>μ</i>M, with correlation coefficients of 0.9856 and 0.9946, respectively. The limit of detection of the GCE/AB sensor was 0.15 nM. Moreover, the GCE/AB sensor showed good precision and accuracy. Finally, the GCE/AB sensor was successfully applied to determine IMA in human serum samples, and the recoveries were satisfactory.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile and Sensitive Acetylene Black-Based Electrochemical Sensor for the Detection of Imatinib\",\"authors\":\"Shun Li, Qingwu Tian, Xuanming Xu, Chao Xuan, Xiaomin Yang, Shukai Sun, Tingting Zhou\",\"doi\":\"10.1155/2023/3228470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A facile and sensitive electrochemical sensor for determining imatinib (IMA) was constructed by modifying a glassy carbon electrode (GCE) with a nanocarbon material, acetylene black (AB). The electrochemical behavior of IMA on the prepared GCE/AB was studied using electrochemical techniques, namely, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy. The direct determination of IMA by the GCE/AB sensor was accomplished using DPV under optimized conditions. The method verification showed that the oxidation peak current was proportional to the concentrations of IMA in the linear ranges of 0.01–0.5 and 0.5–4 <i>μ</i>M, with correlation coefficients of 0.9856 and 0.9946, respectively. The limit of detection of the GCE/AB sensor was 0.15 nM. Moreover, the GCE/AB sensor showed good precision and accuracy. Finally, the GCE/AB sensor was successfully applied to determine IMA in human serum samples, and the recoveries were satisfactory.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3228470\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/3228470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Facile and Sensitive Acetylene Black-Based Electrochemical Sensor for the Detection of Imatinib
A facile and sensitive electrochemical sensor for determining imatinib (IMA) was constructed by modifying a glassy carbon electrode (GCE) with a nanocarbon material, acetylene black (AB). The electrochemical behavior of IMA on the prepared GCE/AB was studied using electrochemical techniques, namely, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy. The direct determination of IMA by the GCE/AB sensor was accomplished using DPV under optimized conditions. The method verification showed that the oxidation peak current was proportional to the concentrations of IMA in the linear ranges of 0.01–0.5 and 0.5–4 μM, with correlation coefficients of 0.9856 and 0.9946, respectively. The limit of detection of the GCE/AB sensor was 0.15 nM. Moreover, the GCE/AB sensor showed good precision and accuracy. Finally, the GCE/AB sensor was successfully applied to determine IMA in human serum samples, and the recoveries were satisfactory.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.