时空数据贝叶斯建模的关键差异度量

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Lindsay R. Morris, Nokuthaba Sibanda
{"title":"时空数据贝叶斯建模的关键差异度量","authors":"Lindsay R. Morris, Nokuthaba Sibanda","doi":"10.1007/s10651-022-00529-4","DOIUrl":null,"url":null,"abstract":"<p>Within the field of geostatistics, Gaussian processes are a staple for modelling spatial and spatio-temporal data. Statistical literature is rich with estimation methods for the mean and covariance of such processes (in both frequentist and Bayesian contexts). Considerably less attention has been paid to developing goodness-of-fit tests for assessment of model adequacy. Jun et al. (Environmetrics 25(8):584–595, 2014) introduced a statistical test that uses pivotal discrepancy measures to assess goodness-of-fit in the Bayesian context. We present a modification and generalization of their statistical test. The initial method involves spatial partitioning of the data, followed by evaluation of a pivotal discrepancy measure at each posterior draw to obtain a posterior distribution of pivotal statistics. Order statistics from this distribution are used to obtain approximate p-values. Jun et al. (Environmetrics 25(8):584–595, 2014) use arbitrary partitions based on pre-existing spatial boundaries. The partitions are made to be of equal size. Our contribution is two-fold. We use K-means clustering to create the spatial partitions and we generalise Jun et al.’s approach to incorporate unequal partition sizes. Observations from a spatial or spatio-temporal process are partitioned using an appropriate feature vector that incorporates the geographic location of the observations into subsets (not necessarily of the same size). The method’s viability is illustrated in a simulation study, and in an application to hoki (<i>Macruronus novaezelandiae</i>) catch data from a survey of the sub-Antarctic region.</p>","PeriodicalId":50519,"journal":{"name":"Environmental and Ecological Statistics","volume":"32 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pivotal discrepancy measures for Bayesian modelling of spatio-temporal data\",\"authors\":\"Lindsay R. Morris, Nokuthaba Sibanda\",\"doi\":\"10.1007/s10651-022-00529-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Within the field of geostatistics, Gaussian processes are a staple for modelling spatial and spatio-temporal data. Statistical literature is rich with estimation methods for the mean and covariance of such processes (in both frequentist and Bayesian contexts). Considerably less attention has been paid to developing goodness-of-fit tests for assessment of model adequacy. Jun et al. (Environmetrics 25(8):584–595, 2014) introduced a statistical test that uses pivotal discrepancy measures to assess goodness-of-fit in the Bayesian context. We present a modification and generalization of their statistical test. The initial method involves spatial partitioning of the data, followed by evaluation of a pivotal discrepancy measure at each posterior draw to obtain a posterior distribution of pivotal statistics. Order statistics from this distribution are used to obtain approximate p-values. Jun et al. (Environmetrics 25(8):584–595, 2014) use arbitrary partitions based on pre-existing spatial boundaries. The partitions are made to be of equal size. Our contribution is two-fold. We use K-means clustering to create the spatial partitions and we generalise Jun et al.’s approach to incorporate unequal partition sizes. Observations from a spatial or spatio-temporal process are partitioned using an appropriate feature vector that incorporates the geographic location of the observations into subsets (not necessarily of the same size). The method’s viability is illustrated in a simulation study, and in an application to hoki (<i>Macruronus novaezelandiae</i>) catch data from a survey of the sub-Antarctic region.</p>\",\"PeriodicalId\":50519,\"journal\":{\"name\":\"Environmental and Ecological Statistics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Ecological Statistics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10651-022-00529-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Ecological Statistics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10651-022-00529-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

在地质统计学领域,高斯过程是空间和时空数据建模的主要方法。统计文献中有大量关于这些过程的均值和协方差的估计方法(在频率论和贝叶斯上下文中)。开发适合度检验以评估模型充分性的注意要少得多。Jun等人(Environmetrics 25(8): 584-595, 2014)引入了一种统计测试,该测试使用关键差异度量来评估贝叶斯背景下的拟合优度。我们对他们的统计检验进行了修改和推广。最初的方法包括对数据进行空间划分,然后对每个后验图的关键差异度量进行评估,以获得关键统计量的后验分布。该分布的序统计量用于获得近似p值。Jun等人(environmental metrics 25(8): 584-595, 2014)使用基于已有空间边界的任意分区。这些分区的大小是相等的。我们的贡献是双重的。我们使用K-means聚类来创建空间分区,并推广Jun等人的方法来合并不相等的分区大小。来自空间或时空过程的观测数据使用适当的特征向量进行分割,该特征向量将观测数据的地理位置纳入子集(不一定具有相同的大小)。该方法的可行性在模拟研究中得到了证明,并应用于对亚南极地区调查所得的木鱼捕获数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pivotal discrepancy measures for Bayesian modelling of spatio-temporal data

Within the field of geostatistics, Gaussian processes are a staple for modelling spatial and spatio-temporal data. Statistical literature is rich with estimation methods for the mean and covariance of such processes (in both frequentist and Bayesian contexts). Considerably less attention has been paid to developing goodness-of-fit tests for assessment of model adequacy. Jun et al. (Environmetrics 25(8):584–595, 2014) introduced a statistical test that uses pivotal discrepancy measures to assess goodness-of-fit in the Bayesian context. We present a modification and generalization of their statistical test. The initial method involves spatial partitioning of the data, followed by evaluation of a pivotal discrepancy measure at each posterior draw to obtain a posterior distribution of pivotal statistics. Order statistics from this distribution are used to obtain approximate p-values. Jun et al. (Environmetrics 25(8):584–595, 2014) use arbitrary partitions based on pre-existing spatial boundaries. The partitions are made to be of equal size. Our contribution is two-fold. We use K-means clustering to create the spatial partitions and we generalise Jun et al.’s approach to incorporate unequal partition sizes. Observations from a spatial or spatio-temporal process are partitioned using an appropriate feature vector that incorporates the geographic location of the observations into subsets (not necessarily of the same size). The method’s viability is illustrated in a simulation study, and in an application to hoki (Macruronus novaezelandiae) catch data from a survey of the sub-Antarctic region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Ecological Statistics
Environmental and Ecological Statistics 环境科学-环境科学
CiteScore
5.90
自引率
2.60%
发文量
27
审稿时长
>36 weeks
期刊介绍: Environmental and Ecological Statistics publishes papers on practical applications of statistics and related quantitative methods to environmental science addressing contemporary issues. Emphasis is on applied mathematical statistics, statistical methodology, and data interpretation and improvement for future use, with a view to advance statistics for environment, ecology and environmental health, and to advance environmental theory and practice using valid statistics. Besides clarity of exposition, a single most important criterion for publication is the appropriateness of the statistical method to the particular environmental problem. The Journal covers all aspects of the collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. The Journal is cross-disciplinary within the context of contemporary environmental issues and the associated statistical tools, concepts and methods. The Journal broadly covers theory and methods, case studies and applications, environmental change and statistical ecology, environmental health statistics and stochastics, and related areas. Special features include invited discussion papers; research communications; technical notes and consultation corner; mini-reviews; letters to the Editor; news, views and announcements; hardware and software reviews; data management etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信