{"title":"用确定性设计的分层抽样估计年木材产品产量的变化","authors":"James A. Westfall, John W. Coulston","doi":"10.1007/s10651-022-00533-8","DOIUrl":null,"url":null,"abstract":"<p>A key aspect in understanding patterns in wood demand and harvesting activities is monitoring of timber products output by wood processing facilities. Estimation of change from year-to-year is necessary but is complicated due to shifts in the population as well as changing strata over time. Taking independent samples each year eases complexity, yet suffers from relatively large sampling error in comparison to other designs that take advantage of the covariance arising from correlated samples. In this study, a design intended to maximize the precision of the change estimate by retaining the initial sample to the extent possible was analyzed. Several approaches to estimating the covariance, with the primary challenge being that sometimes only a single sample unit occurred in both samples within a given stratum. Variance underestimation and overestimation were encountered depending on the covariance method. The best outcome was attained using a measure-of-size variable at the population level to approximate the covariance. However, this approach overestimated the variance by 11% in a Monte Carlo simulation. The simulation results suggested a 14% reduction in the standard error of the estimate was attainable from correlated samples relative to independent samples. Due to the challenges introduced for estimating the covariance for changing populations and strata over time, the value of relatively small reductions in sampling error need to be considered in the context of introducing complex and potentially unreliable covariance estimation methods.</p>","PeriodicalId":50519,"journal":{"name":"Environmental and Ecological Statistics","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating change in annual timber products output using a stratified sampling with certainty design\",\"authors\":\"James A. Westfall, John W. Coulston\",\"doi\":\"10.1007/s10651-022-00533-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A key aspect in understanding patterns in wood demand and harvesting activities is monitoring of timber products output by wood processing facilities. Estimation of change from year-to-year is necessary but is complicated due to shifts in the population as well as changing strata over time. Taking independent samples each year eases complexity, yet suffers from relatively large sampling error in comparison to other designs that take advantage of the covariance arising from correlated samples. In this study, a design intended to maximize the precision of the change estimate by retaining the initial sample to the extent possible was analyzed. Several approaches to estimating the covariance, with the primary challenge being that sometimes only a single sample unit occurred in both samples within a given stratum. Variance underestimation and overestimation were encountered depending on the covariance method. The best outcome was attained using a measure-of-size variable at the population level to approximate the covariance. However, this approach overestimated the variance by 11% in a Monte Carlo simulation. The simulation results suggested a 14% reduction in the standard error of the estimate was attainable from correlated samples relative to independent samples. Due to the challenges introduced for estimating the covariance for changing populations and strata over time, the value of relatively small reductions in sampling error need to be considered in the context of introducing complex and potentially unreliable covariance estimation methods.</p>\",\"PeriodicalId\":50519,\"journal\":{\"name\":\"Environmental and Ecological Statistics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Ecological Statistics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10651-022-00533-8\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Ecological Statistics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10651-022-00533-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Estimating change in annual timber products output using a stratified sampling with certainty design
A key aspect in understanding patterns in wood demand and harvesting activities is monitoring of timber products output by wood processing facilities. Estimation of change from year-to-year is necessary but is complicated due to shifts in the population as well as changing strata over time. Taking independent samples each year eases complexity, yet suffers from relatively large sampling error in comparison to other designs that take advantage of the covariance arising from correlated samples. In this study, a design intended to maximize the precision of the change estimate by retaining the initial sample to the extent possible was analyzed. Several approaches to estimating the covariance, with the primary challenge being that sometimes only a single sample unit occurred in both samples within a given stratum. Variance underestimation and overestimation were encountered depending on the covariance method. The best outcome was attained using a measure-of-size variable at the population level to approximate the covariance. However, this approach overestimated the variance by 11% in a Monte Carlo simulation. The simulation results suggested a 14% reduction in the standard error of the estimate was attainable from correlated samples relative to independent samples. Due to the challenges introduced for estimating the covariance for changing populations and strata over time, the value of relatively small reductions in sampling error need to be considered in the context of introducing complex and potentially unreliable covariance estimation methods.
期刊介绍:
Environmental and Ecological Statistics publishes papers on practical applications of statistics and related quantitative methods to environmental science addressing contemporary issues.
Emphasis is on applied mathematical statistics, statistical methodology, and data interpretation and improvement for future use, with a view to advance statistics for environment, ecology and environmental health, and to advance environmental theory and practice using valid statistics.
Besides clarity of exposition, a single most important criterion for publication is the appropriateness of the statistical method to the particular environmental problem. The Journal covers all aspects of the collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. The Journal is cross-disciplinary within the context of contemporary environmental issues and the associated statistical tools, concepts and methods. The Journal broadly covers theory and methods, case studies and applications, environmental change and statistical ecology, environmental health statistics and stochastics, and related areas. Special features include invited discussion papers; research communications; technical notes and consultation corner; mini-reviews; letters to the Editor; news, views and announcements; hardware and software reviews; data management etc.