用确定性设计的分层抽样估计年木材产品产量的变化

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
James A. Westfall, John W. Coulston
{"title":"用确定性设计的分层抽样估计年木材产品产量的变化","authors":"James A. Westfall, John W. Coulston","doi":"10.1007/s10651-022-00533-8","DOIUrl":null,"url":null,"abstract":"<p>A key aspect in understanding patterns in wood demand and harvesting activities is monitoring of timber products output by wood processing facilities. Estimation of change from year-to-year is necessary but is complicated due to shifts in the population as well as changing strata over time. Taking independent samples each year eases complexity, yet suffers from relatively large sampling error in comparison to other designs that take advantage of the covariance arising from correlated samples. In this study, a design intended to maximize the precision of the change estimate by retaining the initial sample to the extent possible was analyzed. Several approaches to estimating the covariance, with the primary challenge being that sometimes only a single sample unit occurred in both samples within a given stratum. Variance underestimation and overestimation were encountered depending on the covariance method. The best outcome was attained using a measure-of-size variable at the population level to approximate the covariance. However, this approach overestimated the variance by 11% in a Monte Carlo simulation. The simulation results suggested a 14% reduction in the standard error of the estimate was attainable from correlated samples relative to independent samples. Due to the challenges introduced for estimating the covariance for changing populations and strata over time, the value of relatively small reductions in sampling error need to be considered in the context of introducing complex and potentially unreliable covariance estimation methods.</p>","PeriodicalId":50519,"journal":{"name":"Environmental and Ecological Statistics","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating change in annual timber products output using a stratified sampling with certainty design\",\"authors\":\"James A. Westfall, John W. Coulston\",\"doi\":\"10.1007/s10651-022-00533-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A key aspect in understanding patterns in wood demand and harvesting activities is monitoring of timber products output by wood processing facilities. Estimation of change from year-to-year is necessary but is complicated due to shifts in the population as well as changing strata over time. Taking independent samples each year eases complexity, yet suffers from relatively large sampling error in comparison to other designs that take advantage of the covariance arising from correlated samples. In this study, a design intended to maximize the precision of the change estimate by retaining the initial sample to the extent possible was analyzed. Several approaches to estimating the covariance, with the primary challenge being that sometimes only a single sample unit occurred in both samples within a given stratum. Variance underestimation and overestimation were encountered depending on the covariance method. The best outcome was attained using a measure-of-size variable at the population level to approximate the covariance. However, this approach overestimated the variance by 11% in a Monte Carlo simulation. The simulation results suggested a 14% reduction in the standard error of the estimate was attainable from correlated samples relative to independent samples. Due to the challenges introduced for estimating the covariance for changing populations and strata over time, the value of relatively small reductions in sampling error need to be considered in the context of introducing complex and potentially unreliable covariance estimation methods.</p>\",\"PeriodicalId\":50519,\"journal\":{\"name\":\"Environmental and Ecological Statistics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Ecological Statistics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10651-022-00533-8\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Ecological Statistics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10651-022-00533-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

了解木材需求和采伐活动模式的一个关键方面是监测木材加工设施的木材产品产出。估计每年的变化是必要的,但由于人口的变化以及随着时间的变化而变化的阶层,这是复杂的。每年抽取独立样本可以减轻复杂性,但与利用相关样本产生的协方差的其他设计相比,抽样误差相对较大。在本研究中,分析了一种旨在通过尽可能保留初始样本来最大化变化估计精度的设计。估计协方差的几种方法,主要的挑战是有时在给定地层的两个样本中只有一个样本单位。协方差法存在方差低估和方差高估的问题。使用总体水平上的大小变量来近似协方差,获得了最佳结果。然而,这种方法在蒙特卡罗模拟中高估了11%的方差。模拟结果表明,相对于独立样本,相关样本的估计标准误差降低了14%。由于估计随时间变化的人口和地层的协方差所带来的挑战,在引入复杂且可能不可靠的协方差估计方法的背景下,需要考虑相对较小的抽样误差减少的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating change in annual timber products output using a stratified sampling with certainty design

A key aspect in understanding patterns in wood demand and harvesting activities is monitoring of timber products output by wood processing facilities. Estimation of change from year-to-year is necessary but is complicated due to shifts in the population as well as changing strata over time. Taking independent samples each year eases complexity, yet suffers from relatively large sampling error in comparison to other designs that take advantage of the covariance arising from correlated samples. In this study, a design intended to maximize the precision of the change estimate by retaining the initial sample to the extent possible was analyzed. Several approaches to estimating the covariance, with the primary challenge being that sometimes only a single sample unit occurred in both samples within a given stratum. Variance underestimation and overestimation were encountered depending on the covariance method. The best outcome was attained using a measure-of-size variable at the population level to approximate the covariance. However, this approach overestimated the variance by 11% in a Monte Carlo simulation. The simulation results suggested a 14% reduction in the standard error of the estimate was attainable from correlated samples relative to independent samples. Due to the challenges introduced for estimating the covariance for changing populations and strata over time, the value of relatively small reductions in sampling error need to be considered in the context of introducing complex and potentially unreliable covariance estimation methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Ecological Statistics
Environmental and Ecological Statistics 环境科学-环境科学
CiteScore
5.90
自引率
2.60%
发文量
27
审稿时长
>36 weeks
期刊介绍: Environmental and Ecological Statistics publishes papers on practical applications of statistics and related quantitative methods to environmental science addressing contemporary issues. Emphasis is on applied mathematical statistics, statistical methodology, and data interpretation and improvement for future use, with a view to advance statistics for environment, ecology and environmental health, and to advance environmental theory and practice using valid statistics. Besides clarity of exposition, a single most important criterion for publication is the appropriateness of the statistical method to the particular environmental problem. The Journal covers all aspects of the collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. The Journal is cross-disciplinary within the context of contemporary environmental issues and the associated statistical tools, concepts and methods. The Journal broadly covers theory and methods, case studies and applications, environmental change and statistical ecology, environmental health statistics and stochastics, and related areas. Special features include invited discussion papers; research communications; technical notes and consultation corner; mini-reviews; letters to the Editor; news, views and announcements; hardware and software reviews; data management etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信