{"title":"确定卡诺群中的1-可纠正措施","authors":"Matthew Badger, Sean Li, Scott Zimmerman","doi":"10.1515/agms-2023-0102","DOIUrl":null,"url":null,"abstract":"We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger and R. Schul in Euclidean space, for an arbitrary <jats:italic>locally finite Borel measure</jats:italic> in an arbitrary <jats:italic>Carnot group</jats:italic>, we develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the measure that is singular to rectifiable curves. Our main result is entwined with an extension of <jats:italic>analyst’s traveling salesman theorem</jats:italic>, which characterizes the subsets of rectifiable curves in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0102_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{R}}}^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (P. W. Jones, <jats:italic>Rectifiable sets and the traveling salesman problem</jats:italic>, Invent. Math. 102 (1990), no. 1, 1–15), in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0102_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (K. Okikiolu, <jats:italic>Characterization of subsets of rectifiable curves in</jats:italic> <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0102_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"bold\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\bf{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, J. London Math. Soc. (2) 46 (1992), no. 2, 336–348), or in an arbitrary Carnot group (S. Li) in terms of local geometric least-squares data called <jats:italic>Jones’</jats:italic> <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0102_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>β</m:mi> </m:math> <jats:tex-math>\\beta </jats:tex-math> </jats:alternatives> </jats:inline-formula>-<jats:italic>numbers</jats:italic>. In a secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0102_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> that charges a rectifiable curve in an arbitrary <jats:italic>complete, doubling, locally quasiconvex metric space</jats:italic>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identifying 1-rectifiable measures in Carnot groups\",\"authors\":\"Matthew Badger, Sean Li, Scott Zimmerman\",\"doi\":\"10.1515/agms-2023-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger and R. Schul in Euclidean space, for an arbitrary <jats:italic>locally finite Borel measure</jats:italic> in an arbitrary <jats:italic>Carnot group</jats:italic>, we develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the measure that is singular to rectifiable curves. Our main result is entwined with an extension of <jats:italic>analyst’s traveling salesman theorem</jats:italic>, which characterizes the subsets of rectifiable curves in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0102_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{R}}}^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (P. W. Jones, <jats:italic>Rectifiable sets and the traveling salesman problem</jats:italic>, Invent. Math. 102 (1990), no. 1, 1–15), in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0102_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (K. Okikiolu, <jats:italic>Characterization of subsets of rectifiable curves in</jats:italic> <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0102_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"bold\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\bf{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, J. London Math. Soc. (2) 46 (1992), no. 2, 336–348), or in an arbitrary Carnot group (S. Li) in terms of local geometric least-squares data called <jats:italic>Jones’</jats:italic> <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0102_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>β</m:mi> </m:math> <jats:tex-math>\\\\beta </jats:tex-math> </jats:alternatives> </jats:inline-formula>-<jats:italic>numbers</jats:italic>. In a secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0102_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> that charges a rectifiable curve in an arbitrary <jats:italic>complete, doubling, locally quasiconvex metric space</jats:italic>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2023-0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2023-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying 1-rectifiable measures in Carnot groups
We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger and R. Schul in Euclidean space, for an arbitrary locally finite Borel measure in an arbitrary Carnot group, we develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the measure that is singular to rectifiable curves. Our main result is entwined with an extension of analyst’s traveling salesman theorem, which characterizes the subsets of rectifiable curves in R2{{\mathbb{R}}}^{2} (P. W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1–15), in Rn{{\mathbb{R}}}^{n} (K. Okikiolu, Characterization of subsets of rectifiable curves inRn{{\bf{R}}}^{n}, J. London Math. Soc. (2) 46 (1992), no. 2, 336–348), or in an arbitrary Carnot group (S. Li) in terms of local geometric least-squares data called Jones’β\beta -numbers. In a secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in Rn{{\mathbb{R}}}^{n} that charges a rectifiable curve in an arbitrary complete, doubling, locally quasiconvex metric space.