卡诺群的非接触映射类及度量性质

Pub Date : 2023-11-24 DOI:10.1134/s0037446623060083
M. B. Karmanova
{"title":"卡诺群的非接触映射类及度量性质","authors":"M. B. Karmanova","doi":"10.1134/s0037446623060083","DOIUrl":null,"url":null,"abstract":"<p>We study the metric properties of level surfaces\nfor classes of smooth noncontact mappings\nfrom arbitrary Carnot groups into two-step ones\nwith some constraints on the dimensions of horizontal subbundles\nand the subbundles corresponding to degree 2 fields.\nWe calculate the Hausdorff dimension of the level surfaces\nwith respect to the sub-Riemannian quasimetric\nand derive an analytical relation between the Hausdorff measures\nfor the sub-Riemannian quasimetric and the Riemannian metric.\nAs application,\nwe establish a new form of coarea formula, also proving that\nthe new coarea factor is well defined.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classes of Noncontact Mappings of Carnot Groups and Metric Properties\",\"authors\":\"M. B. Karmanova\",\"doi\":\"10.1134/s0037446623060083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the metric properties of level surfaces\\nfor classes of smooth noncontact mappings\\nfrom arbitrary Carnot groups into two-step ones\\nwith some constraints on the dimensions of horizontal subbundles\\nand the subbundles corresponding to degree 2 fields.\\nWe calculate the Hausdorff dimension of the level surfaces\\nwith respect to the sub-Riemannian quasimetric\\nand derive an analytical relation between the Hausdorff measures\\nfor the sub-Riemannian quasimetric and the Riemannian metric.\\nAs application,\\nwe establish a new form of coarea formula, also proving that\\nthe new coarea factor is well defined.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446623060083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446623060083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了从任意卡诺群到两步卡诺群的光滑非接触映射类的水平曲面的度量性质,并对水平子束和对应于2次域的子束的维数进行了约束。我们计算了水平面相对于次黎曼拟度量的豪斯多夫维数,并推导了次黎曼拟度量和黎曼度量的豪斯多夫测度之间的解析关系。作为应用,我们建立了一种新的共面积公式形式,并证明了新的共面积因子是定义良好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Classes of Noncontact Mappings of Carnot Groups and Metric Properties

We study the metric properties of level surfaces for classes of smooth noncontact mappings from arbitrary Carnot groups into two-step ones with some constraints on the dimensions of horizontal subbundles and the subbundles corresponding to degree 2 fields. We calculate the Hausdorff dimension of the level surfaces with respect to the sub-Riemannian quasimetric and derive an analytical relation between the Hausdorff measures for the sub-Riemannian quasimetric and the Riemannian metric. As application, we establish a new form of coarea formula, also proving that the new coarea factor is well defined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信