{"title":"卡诺群上的$ BV $ -空间与$ BV $ -函数的有界复合算子","authors":"D. A. Sboev","doi":"10.1134/s0037446623060149","DOIUrl":null,"url":null,"abstract":"<p>Under study are the homeomorphisms that induce the bounded composition operators of <span>\\( BV \\)</span>-functions\non Carnot groups.\nWe characterize continuous\n<span>\\( BV_{\\operatorname{loc}} \\)</span>-mappings\non Carnot groups\nin terms of the variation on integral lines\nand estimate the variation of the\n<span>\\( BV \\)</span>-derivative of the composition of a <span>\\( C^{1} \\)</span>-function\nand a continuous\n<span>\\( BV_{\\operatorname{loc}} \\)</span>-mapping.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":"2018 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$ BV $ -Spaces and the Bounded Composition Operators of $ BV $ -Functions on Carnot Groups\",\"authors\":\"D. A. Sboev\",\"doi\":\"10.1134/s0037446623060149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Under study are the homeomorphisms that induce the bounded composition operators of <span>\\\\( BV \\\\)</span>-functions\\non Carnot groups.\\nWe characterize continuous\\n<span>\\\\( BV_{\\\\operatorname{loc}} \\\\)</span>-mappings\\non Carnot groups\\nin terms of the variation on integral lines\\nand estimate the variation of the\\n<span>\\\\( BV \\\\)</span>-derivative of the composition of a <span>\\\\( C^{1} \\\\)</span>-function\\nand a continuous\\n<span>\\\\( BV_{\\\\operatorname{loc}} \\\\)</span>-mapping.</p>\",\"PeriodicalId\":49533,\"journal\":{\"name\":\"Siberian Mathematical Journal\",\"volume\":\"2018 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446623060149\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446623060149","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
$ BV $ -Spaces and the Bounded Composition Operators of $ BV $ -Functions on Carnot Groups
Under study are the homeomorphisms that induce the bounded composition operators of \( BV \)-functions
on Carnot groups.
We characterize continuous
\( BV_{\operatorname{loc}} \)-mappings
on Carnot groups
in terms of the variation on integral lines
and estimate the variation of the
\( BV \)-derivative of the composition of a \( C^{1} \)-function
and a continuous
\( BV_{\operatorname{loc}} \)-mapping.
期刊介绍:
Siberian Mathematical Journal is journal published in collaboration with the Sobolev Institute of Mathematics in Novosibirsk. The journal publishes the results of studies in various branches of mathematics.