Procrustes的形状不能一次分析、解释或可视化一个地标

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andrea Cardini, Verderame Adolfo Marco
{"title":"Procrustes的形状不能一次分析、解释或可视化一个地标","authors":"Andrea Cardini, Verderame Adolfo Marco","doi":"10.1007/s11692-022-09565-1","DOIUrl":null,"url":null,"abstract":"<p>Landmark-based geometric morphometrics using the Procrustes approach has become the dominant family of methods in morphometrics. However, the superimposition (and sliding, if semilandmarks are present), that transforms raw coordinates into shape coordinates is biologically arbitrary. Procrustes has desirable statistical properties, but is not based on a biological model. The same is true for sliding methods. These techniques allow powerful statistical analyses of a full set of shape coordinates, but make the use of subsets of landmarks/semilandmarks problematic, inaccurate and misleading, if not totally wrong. Crucially, the biological arbitrariness of the superimposition prevents any meaningful quantification, analysis and interpretation of variation one landmark/semilandmark at a time. We exemplify how misleading this type of analyses can be by using a real dataset, as well as simulated data with isotropic variation. Both show inconsistencies in ‘per-landmark/semilandmark’ variances. The simulation in fact helps to make even more obvious that the pattern of variance is strongly influenced by the biologically arbitrary choice of the mathematical treatment. Unfortunately, despite this limitation of all superimposition methods being known since the early days of Procrustean morphometrics, there has been a recent series of papers in leading journals presenting results of ‘per-landmark’ analyses. Thus, we further clarify why these analyses are wrong and represent misleading examples that should not be followed: Procrustes shape data cannot be analyzed, visualized or interpreted one landmark at a time. For users who are in doubt, in the Conclusions, we provide a short list of recommendations on how to easily avoid this type of mistakes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Procrustes Shape Cannot be Analyzed, Interpreted or Visualized one Landmark at a Time\",\"authors\":\"Andrea Cardini, Verderame Adolfo Marco\",\"doi\":\"10.1007/s11692-022-09565-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Landmark-based geometric morphometrics using the Procrustes approach has become the dominant family of methods in morphometrics. However, the superimposition (and sliding, if semilandmarks are present), that transforms raw coordinates into shape coordinates is biologically arbitrary. Procrustes has desirable statistical properties, but is not based on a biological model. The same is true for sliding methods. These techniques allow powerful statistical analyses of a full set of shape coordinates, but make the use of subsets of landmarks/semilandmarks problematic, inaccurate and misleading, if not totally wrong. Crucially, the biological arbitrariness of the superimposition prevents any meaningful quantification, analysis and interpretation of variation one landmark/semilandmark at a time. We exemplify how misleading this type of analyses can be by using a real dataset, as well as simulated data with isotropic variation. Both show inconsistencies in ‘per-landmark/semilandmark’ variances. The simulation in fact helps to make even more obvious that the pattern of variance is strongly influenced by the biologically arbitrary choice of the mathematical treatment. Unfortunately, despite this limitation of all superimposition methods being known since the early days of Procrustean morphometrics, there has been a recent series of papers in leading journals presenting results of ‘per-landmark’ analyses. Thus, we further clarify why these analyses are wrong and represent misleading examples that should not be followed: Procrustes shape data cannot be analyzed, visualized or interpreted one landmark at a time. For users who are in doubt, in the Conclusions, we provide a short list of recommendations on how to easily avoid this type of mistakes.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11692-022-09565-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11692-022-09565-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用Procrustes方法的基于地标的几何形态测量学已经成为形态测量学中占主导地位的方法。然而,将原始坐标转换为形状坐标的叠加(以及滑动,如果存在半标记)在生物学上是任意的。Procrustes具有理想的统计特性,但不是基于生物学模型。滑动方法也是如此。这些技术允许对完整的形状坐标集进行强大的统计分析,但使地标/半地标子集的使用成为问题,不准确和误导,如果不是完全错误的话。至关重要的是,叠加的生物任意性阻止了对一个里程碑/半里程碑的变化进行任何有意义的量化、分析和解释。我们通过使用真实数据集以及具有各向同性变化的模拟数据来举例说明这种类型的分析是如何误导的。两者在“每里程碑/半里程碑”差异上都表现出不一致。事实上,模拟有助于更明显地表明,方差的模式受到数学处理的生物学任意选择的强烈影响。不幸的是,尽管自Procrustean形态计量学早期以来已知的所有叠加方法都存在这种局限性,但最近在主要期刊上发表了一系列论文,介绍了“每个里程碑”分析的结果。因此,我们进一步澄清了为什么这些分析是错误的,并代表了不应该遵循的误导性示例:Procrustes形状数据不能一次分析,可视化或解释一个地标。对于有疑问的用户,在结论中,我们提供了一个简短的建议列表,说明如何轻松避免这类错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Procrustes Shape Cannot be Analyzed, Interpreted or Visualized one Landmark at a Time

Landmark-based geometric morphometrics using the Procrustes approach has become the dominant family of methods in morphometrics. However, the superimposition (and sliding, if semilandmarks are present), that transforms raw coordinates into shape coordinates is biologically arbitrary. Procrustes has desirable statistical properties, but is not based on a biological model. The same is true for sliding methods. These techniques allow powerful statistical analyses of a full set of shape coordinates, but make the use of subsets of landmarks/semilandmarks problematic, inaccurate and misleading, if not totally wrong. Crucially, the biological arbitrariness of the superimposition prevents any meaningful quantification, analysis and interpretation of variation one landmark/semilandmark at a time. We exemplify how misleading this type of analyses can be by using a real dataset, as well as simulated data with isotropic variation. Both show inconsistencies in ‘per-landmark/semilandmark’ variances. The simulation in fact helps to make even more obvious that the pattern of variance is strongly influenced by the biologically arbitrary choice of the mathematical treatment. Unfortunately, despite this limitation of all superimposition methods being known since the early days of Procrustean morphometrics, there has been a recent series of papers in leading journals presenting results of ‘per-landmark’ analyses. Thus, we further clarify why these analyses are wrong and represent misleading examples that should not be followed: Procrustes shape data cannot be analyzed, visualized or interpreted one landmark at a time. For users who are in doubt, in the Conclusions, we provide a short list of recommendations on how to easily avoid this type of mistakes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信