两个广义单调算子和一个正则算子和的自适应分割算法

Dao, Minh N., Phan, Hung M.
{"title":"两个广义单调算子和一个正则算子和的自适应分割算法","authors":"Dao, Minh N., Phan, Hung M.","doi":"10.1186/s13663-021-00701-8","DOIUrl":null,"url":null,"abstract":"Splitting algorithms for finding a zero of sum of operators often involve multiple steps which are referred to as forward or backward steps. Forward steps are the explicit use of the operators and backward steps involve the operators implicitly via their resolvents. In this paper, we study an adaptive splitting algorithm for finding a zero of the sum of three operators. We assume that two of the operators are generalized monotone and their resolvents are computable, while the other operator is cocoercive but its resolvent is missing or costly to compute. Our splitting algorithm adapts new parameters to the generalized monotonicity of the operators and, at the same time, combines appropriate forward and backward steps to guarantee convergence to a solution of the problem.","PeriodicalId":12293,"journal":{"name":"Fixed Point Theory and Applications","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An adaptive splitting algorithm for the sum of two generalized monotone operators and one cocoercive operator\",\"authors\":\"Dao, Minh N., Phan, Hung M.\",\"doi\":\"10.1186/s13663-021-00701-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Splitting algorithms for finding a zero of sum of operators often involve multiple steps which are referred to as forward or backward steps. Forward steps are the explicit use of the operators and backward steps involve the operators implicitly via their resolvents. In this paper, we study an adaptive splitting algorithm for finding a zero of the sum of three operators. We assume that two of the operators are generalized monotone and their resolvents are computable, while the other operator is cocoercive but its resolvent is missing or costly to compute. Our splitting algorithm adapts new parameters to the generalized monotonicity of the operators and, at the same time, combines appropriate forward and backward steps to guarantee convergence to a solution of the problem.\",\"PeriodicalId\":12293,\"journal\":{\"name\":\"Fixed Point Theory and Applications\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed Point Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13663-021-00701-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13663-021-00701-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

求运算符和零的分割算法通常涉及多个步骤,这些步骤被称为向前或向后步骤。向前的步骤是显式地使用操作符,向后的步骤通过它们的解析隐式地涉及操作符。本文研究了一种求三个算子和的零的自适应分割算法。我们假设其中两个算子是广义单调的,它们的解是可计算的,而另一个算子是广义单调的,但它的解是缺失的或计算成本高的。我们的分裂算法根据算子的广义单调性采用新的参数,同时结合适当的向前和向后步,保证问题的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive splitting algorithm for the sum of two generalized monotone operators and one cocoercive operator
Splitting algorithms for finding a zero of sum of operators often involve multiple steps which are referred to as forward or backward steps. Forward steps are the explicit use of the operators and backward steps involve the operators implicitly via their resolvents. In this paper, we study an adaptive splitting algorithm for finding a zero of the sum of three operators. We assume that two of the operators are generalized monotone and their resolvents are computable, while the other operator is cocoercive but its resolvent is missing or costly to compute. Our splitting algorithm adapts new parameters to the generalized monotonicity of the operators and, at the same time, combines appropriate forward and backward steps to guarantee convergence to a solution of the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fixed Point Theory and Applications
Fixed Point Theory and Applications MATHEMATICS, APPLIED-MATHEMATICS
自引率
0.00%
发文量
0
期刊介绍: In a wide range of mathematical, computational, economical, modeling and engineering problems, the existence of a solution to a theoretical or real world problem is equivalent to the existence of a fixed point for a suitable map or operator. Fixed points are therefore of paramount importance in many areas of mathematics, sciences and engineering. The theory itself is a beautiful mixture of analysis (pure and applied), topology and geometry. Over the last 60 years or so, the theory of fixed points has been revealed as a very powerful and important tool in the study of nonlinear phenomena. In particular, fixed point techniques have been applied in such diverse fields as biology, chemistry, physics, engineering, game theory and economics. In numerous cases finding the exact solution is not possible; hence it is necessary to develop appropriate algorithms to approximate the requested result. This is strongly related to control and optimization problems arising in the different sciences and in engineering problems. Many situations in the study of nonlinear equations, calculus of variations, partial differential equations, optimal control and inverse problems can be formulated in terms of fixed point problems or optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信