市场均衡和货币

Flåm, Sjur Didrik
{"title":"市场均衡和货币","authors":"Flåm, Sjur Didrik","doi":"10.1186/s13663-021-00705-4","DOIUrl":null,"url":null,"abstract":"By the first welfare theorem, competitive market equilibria belong to the core and hence are Pareto optimal. Letting money be a commodity, this paper turns these two inclusions around. More precisely, by generalizing the second welfare theorem we show that the said solutions may coincide as a common fixed point for one and the same system. Mathematical arguments invoke conjugation, convolution, and generalized gradients. Convexity is merely needed via subdifferentiablity of aggregate “cost”, and at one point only. Economic arguments hinge on idealized market mechanisms. Construed as algorithms, each stops, and a steady state prevails if and only if price-taking markets clear and value added is nil.","PeriodicalId":12293,"journal":{"name":"Fixed Point Theory and Applications","volume":"16 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Market equilibria and money\",\"authors\":\"Flåm, Sjur Didrik\",\"doi\":\"10.1186/s13663-021-00705-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By the first welfare theorem, competitive market equilibria belong to the core and hence are Pareto optimal. Letting money be a commodity, this paper turns these two inclusions around. More precisely, by generalizing the second welfare theorem we show that the said solutions may coincide as a common fixed point for one and the same system. Mathematical arguments invoke conjugation, convolution, and generalized gradients. Convexity is merely needed via subdifferentiablity of aggregate “cost”, and at one point only. Economic arguments hinge on idealized market mechanisms. Construed as algorithms, each stops, and a steady state prevails if and only if price-taking markets clear and value added is nil.\",\"PeriodicalId\":12293,\"journal\":{\"name\":\"Fixed Point Theory and Applications\",\"volume\":\"16 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed Point Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13663-021-00705-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13663-021-00705-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

根据福利第一定理,竞争市场均衡属于核心均衡,因此是帕累托最优均衡。让货币成为一种商品,这篇文章将这两个内容反过来。更准确地说,通过推广第二福利定理,我们证明了上述解可以重合为同一系统的公共不动点。数学参数调用共轭、卷积和广义梯度。凸性只需要通过总“成本”的次可微性,并且只需要在一点上。经济论点取决于理想化的市场机制。作为一种算法,当且仅当定价市场清晰且附加值为零时,每一种算法都会停止,稳定状态占据主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Market equilibria and money
By the first welfare theorem, competitive market equilibria belong to the core and hence are Pareto optimal. Letting money be a commodity, this paper turns these two inclusions around. More precisely, by generalizing the second welfare theorem we show that the said solutions may coincide as a common fixed point for one and the same system. Mathematical arguments invoke conjugation, convolution, and generalized gradients. Convexity is merely needed via subdifferentiablity of aggregate “cost”, and at one point only. Economic arguments hinge on idealized market mechanisms. Construed as algorithms, each stops, and a steady state prevails if and only if price-taking markets clear and value added is nil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fixed Point Theory and Applications
Fixed Point Theory and Applications MATHEMATICS, APPLIED-MATHEMATICS
自引率
0.00%
发文量
0
期刊介绍: In a wide range of mathematical, computational, economical, modeling and engineering problems, the existence of a solution to a theoretical or real world problem is equivalent to the existence of a fixed point for a suitable map or operator. Fixed points are therefore of paramount importance in many areas of mathematics, sciences and engineering. The theory itself is a beautiful mixture of analysis (pure and applied), topology and geometry. Over the last 60 years or so, the theory of fixed points has been revealed as a very powerful and important tool in the study of nonlinear phenomena. In particular, fixed point techniques have been applied in such diverse fields as biology, chemistry, physics, engineering, game theory and economics. In numerous cases finding the exact solution is not possible; hence it is necessary to develop appropriate algorithms to approximate the requested result. This is strongly related to control and optimization problems arising in the different sciences and in engineering problems. Many situations in the study of nonlinear equations, calculus of variations, partial differential equations, optimal control and inverse problems can be formulated in terms of fixed point problems or optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信