{"title":"径向基函数-有限差分法求解具有误差估计和孤立波描述的改进Boussinesq模型","authors":"Mostafa Abbaszadeh, AliReza Bagheri Salec, Taghreed Abdul-Kareem Hatim Aal-Ezirej","doi":"10.1002/num.23077","DOIUrl":null,"url":null,"abstract":"The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniqueness of solution of the semi-discrete scheme according to the fixed point theorem. In addition, the unconditional stability and convergence of the semi-discrete scheme are presented. Then, we construct the fully discrete formulation based upon the radial basis function-finite difference method. The convergence rate and stability of the fully-discrete scheme are analyzed. In the end, some examples in 1D and 2D cases are studied to corroborate the capability of the proposed scheme.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A radial basis function (RBF)-finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves\",\"authors\":\"Mostafa Abbaszadeh, AliReza Bagheri Salec, Taghreed Abdul-Kareem Hatim Aal-Ezirej\",\"doi\":\"10.1002/num.23077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniqueness of solution of the semi-discrete scheme according to the fixed point theorem. In addition, the unconditional stability and convergence of the semi-discrete scheme are presented. Then, we construct the fully discrete formulation based upon the radial basis function-finite difference method. The convergence rate and stability of the fully-discrete scheme are analyzed. In the end, some examples in 1D and 2D cases are studied to corroborate the capability of the proposed scheme.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A radial basis function (RBF)-finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves
The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniqueness of solution of the semi-discrete scheme according to the fixed point theorem. In addition, the unconditional stability and convergence of the semi-discrete scheme are presented. Then, we construct the fully discrete formulation based upon the radial basis function-finite difference method. The convergence rate and stability of the fully-discrete scheme are analyzed. In the end, some examples in 1D and 2D cases are studied to corroborate the capability of the proposed scheme.