关于阿贝尔亲李群的副积的简短说明

Wolfgang Herfort, Karl H. Hofmann, Francesco G. Russo
{"title":"关于阿贝尔亲李群的副积的简短说明","authors":"Wolfgang Herfort, Karl H. Hofmann, Francesco G. Russo","doi":"10.1007/s00605-023-01915-1","DOIUrl":null,"url":null,"abstract":"<p>The notion of <i>conditional coproduct</i> of a family of abelian pro-Lie groups in the category of abelian pro-Lie groups is introduced. It is shown that the cartesian product of an arbitrary family of abelian pro-Lie groups can be characterized by the universal property of the <i>conditional coproduct</i>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A short note on coproducts of Abelian pro-Lie groups\",\"authors\":\"Wolfgang Herfort, Karl H. Hofmann, Francesco G. Russo\",\"doi\":\"10.1007/s00605-023-01915-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The notion of <i>conditional coproduct</i> of a family of abelian pro-Lie groups in the category of abelian pro-Lie groups is introduced. It is shown that the cartesian product of an arbitrary family of abelian pro-Lie groups can be characterized by the universal property of the <i>conditional coproduct</i>.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01915-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01915-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在阿贝尔亲李群的范畴中,引入了阿贝尔亲李群族的条件余积的概念。证明了任意一族阿贝尔亲李群的笛卡儿积可以用条件副积的全称性质来表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A short note on coproducts of Abelian pro-Lie groups

The notion of conditional coproduct of a family of abelian pro-Lie groups in the category of abelian pro-Lie groups is introduced. It is shown that the cartesian product of an arbitrary family of abelian pro-Lie groups can be characterized by the universal property of the conditional coproduct.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信