{"title":"满足不变拉普拉斯算子的单位球自映射的若干不等式","authors":"Deguang Zhong, Meilan Huang, Dongping Wei","doi":"10.1007/s00605-023-01925-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study those mappings in unit ball satisfying the Dirichlet problem of the following differential operators </p><span>$$\\begin{aligned} \\Delta _{\\gamma }=\\big (1-|x|^{2}\\big )\\cdot \\left[ \\frac{1-|x|^{2}}{4}\\cdot \\sum _{i}\\frac{\\partial ^{2}}{\\partial x_{i}^{2}}+\\gamma \\sum _{i}x_{i}\\cdot \\frac{\\partial }{\\partial x_{i}}+\\gamma \\left( \\frac{n}{2}-1-\\gamma \\right) \\right] . \\end{aligned}$$</span><p>Our aim is to establish the Schwarz type inequality, Heinz-Schwarz type inequality and boundary Schwarz inequality for those mappings.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some inequalities for self-mappings of unit ball satisfying the invariant Laplacians\",\"authors\":\"Deguang Zhong, Meilan Huang, Dongping Wei\",\"doi\":\"10.1007/s00605-023-01925-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study those mappings in unit ball satisfying the Dirichlet problem of the following differential operators </p><span>$$\\\\begin{aligned} \\\\Delta _{\\\\gamma }=\\\\big (1-|x|^{2}\\\\big )\\\\cdot \\\\left[ \\\\frac{1-|x|^{2}}{4}\\\\cdot \\\\sum _{i}\\\\frac{\\\\partial ^{2}}{\\\\partial x_{i}^{2}}+\\\\gamma \\\\sum _{i}x_{i}\\\\cdot \\\\frac{\\\\partial }{\\\\partial x_{i}}+\\\\gamma \\\\left( \\\\frac{n}{2}-1-\\\\gamma \\\\right) \\\\right] . \\\\end{aligned}$$</span><p>Our aim is to establish the Schwarz type inequality, Heinz-Schwarz type inequality and boundary Schwarz inequality for those mappings.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01925-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01925-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}