具有阿贝尔核的多维多项积分微分方程的有效和精确的时间二阶数值方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mingchao Zhao, Hao Chen, Kexin Li
{"title":"具有阿贝尔核的多维多项积分微分方程的有效和精确的时间二阶数值方法","authors":"Mingchao Zhao, Hao Chen, Kexin Li","doi":"10.1002/num.23082","DOIUrl":null,"url":null,"abstract":"This work develops two temporal second-order alternating direction implicit (ADI) numerical schemes for solving multidimensional parabolic-type integrodifferential equations with multi-term weakly singular Abel kernels. For the two-dimensional (2D) case, applying the Crank–Nicolson method and product integration rule to discretizations of temporal derivative and integral terms, respectively, and the spatial discretization is proposed using a compact difference formulation combined with the ADI algorithm; for the three-dimensional case, the method of temporal discretization is the same as the 2D case, and then we employ the standard finite difference in space to construct a fully discrete ADI finite difference scheme. The ADI technique is used to reduce the calculation cost of the high-dimensional problem. Besides, the stability and convergence of two ADI schemes are rigorously proved by the energy argument, in which the first scheme converges to the order <math altimg=\"urn:x-wiley:num:media:num23082:num23082-math-0001\" display=\"inline\" location=\"graphic/num23082-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>τ</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msup>\n<mo>+</mo>\n<msubsup>\n<mrow>\n<mi>h</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n<mrow>\n<mn>4</mn>\n</mrow>\n</msubsup>\n<mo>+</mo>\n<msubsup>\n<mrow>\n<mi>h</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n<mrow>\n<mn>4</mn>\n</mrow>\n</msubsup>\n</mrow>\n$$ {\\tau}^2+{h}_1^4+{h}_2^4 $$</annotation>\n</semantics></math>, where <math altimg=\"urn:x-wiley:num:media:num23082:num23082-math-0002\" display=\"inline\" location=\"graphic/num23082-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>τ</mi>\n</mrow>\n$$ \\tau $$</annotation>\n</semantics></math>, <math altimg=\"urn:x-wiley:num:media:num23082:num23082-math-0003\" display=\"inline\" location=\"graphic/num23082-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>h</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msub>\n</mrow>\n$$ {h}_1 $$</annotation>\n</semantics></math>, and <math altimg=\"urn:x-wiley:num:media:num23082:num23082-math-0004\" display=\"inline\" location=\"graphic/num23082-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>h</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msub>\n</mrow>\n$$ {h}_2 $$</annotation>\n</semantics></math> denote the time-space step sizes, respectively, and the second scheme converges to the space-time second-order accuracy. Finally, the numerical results verify the correctness of the theoretical analysis and show that the method of this article is competitive with the existing research work.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and accurate temporal second-order numerical methods for multidimensional multi-term integrodifferential equations with the Abel kernels\",\"authors\":\"Mingchao Zhao, Hao Chen, Kexin Li\",\"doi\":\"10.1002/num.23082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops two temporal second-order alternating direction implicit (ADI) numerical schemes for solving multidimensional parabolic-type integrodifferential equations with multi-term weakly singular Abel kernels. For the two-dimensional (2D) case, applying the Crank–Nicolson method and product integration rule to discretizations of temporal derivative and integral terms, respectively, and the spatial discretization is proposed using a compact difference formulation combined with the ADI algorithm; for the three-dimensional case, the method of temporal discretization is the same as the 2D case, and then we employ the standard finite difference in space to construct a fully discrete ADI finite difference scheme. The ADI technique is used to reduce the calculation cost of the high-dimensional problem. Besides, the stability and convergence of two ADI schemes are rigorously proved by the energy argument, in which the first scheme converges to the order <math altimg=\\\"urn:x-wiley:num:media:num23082:num23082-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/num23082-math-0001.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msup>\\n<mrow>\\n<mi>τ</mi>\\n</mrow>\\n<mrow>\\n<mn>2</mn>\\n</mrow>\\n</msup>\\n<mo>+</mo>\\n<msubsup>\\n<mrow>\\n<mi>h</mi>\\n</mrow>\\n<mrow>\\n<mn>1</mn>\\n</mrow>\\n<mrow>\\n<mn>4</mn>\\n</mrow>\\n</msubsup>\\n<mo>+</mo>\\n<msubsup>\\n<mrow>\\n<mi>h</mi>\\n</mrow>\\n<mrow>\\n<mn>2</mn>\\n</mrow>\\n<mrow>\\n<mn>4</mn>\\n</mrow>\\n</msubsup>\\n</mrow>\\n$$ {\\\\tau}^2+{h}_1^4+{h}_2^4 $$</annotation>\\n</semantics></math>, where <math altimg=\\\"urn:x-wiley:num:media:num23082:num23082-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/num23082-math-0002.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>τ</mi>\\n</mrow>\\n$$ \\\\tau $$</annotation>\\n</semantics></math>, <math altimg=\\\"urn:x-wiley:num:media:num23082:num23082-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/num23082-math-0003.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mrow>\\n<mi>h</mi>\\n</mrow>\\n<mrow>\\n<mn>1</mn>\\n</mrow>\\n</msub>\\n</mrow>\\n$$ {h}_1 $$</annotation>\\n</semantics></math>, and <math altimg=\\\"urn:x-wiley:num:media:num23082:num23082-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/num23082-math-0004.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msub>\\n<mrow>\\n<mi>h</mi>\\n</mrow>\\n<mrow>\\n<mn>2</mn>\\n</mrow>\\n</msub>\\n</mrow>\\n$$ {h}_2 $$</annotation>\\n</semantics></math> denote the time-space step sizes, respectively, and the second scheme converges to the space-time second-order accuracy. Finally, the numerical results verify the correctness of the theoretical analysis and show that the method of this article is competitive with the existing research work.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了求解具有多项弱奇异阿贝尔核的多维抛物型积分微分方程的两种时间二阶交替方向隐式数值格式。对于二维(2D)情况,分别采用Crank-Nicolson方法和积积分规则对时间导数项和积分项进行离散化,并采用紧凑差分公式结合ADI算法对空间进行离散化;对于三维情况,采用与二维情况相同的时间离散化方法,然后利用空间上的标准有限差分构造一个完全离散的ADI有限差分格式。采用ADI技术降低了高维问题的计算成本。此外,通过能量论证严格证明了两种ADI格式的稳定性和收敛性,其中第一种格式收敛于τ2+h14+h24 $$ {\tau}^2+{h}_1^4+{h}_2^4 $$阶,其中τ $$ \tau $$、h1 $$ {h}_1 $$和h2 $$ {h}_2 $$分别表示时空步长,第二种格式收敛于时空二阶精度。最后,数值结果验证了理论分析的正确性,表明本文方法与已有的研究工作相比具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and accurate temporal second-order numerical methods for multidimensional multi-term integrodifferential equations with the Abel kernels
This work develops two temporal second-order alternating direction implicit (ADI) numerical schemes for solving multidimensional parabolic-type integrodifferential equations with multi-term weakly singular Abel kernels. For the two-dimensional (2D) case, applying the Crank–Nicolson method and product integration rule to discretizations of temporal derivative and integral terms, respectively, and the spatial discretization is proposed using a compact difference formulation combined with the ADI algorithm; for the three-dimensional case, the method of temporal discretization is the same as the 2D case, and then we employ the standard finite difference in space to construct a fully discrete ADI finite difference scheme. The ADI technique is used to reduce the calculation cost of the high-dimensional problem. Besides, the stability and convergence of two ADI schemes are rigorously proved by the energy argument, in which the first scheme converges to the order τ 2 + h 1 4 + h 2 4 $$ {\tau}^2+{h}_1^4+{h}_2^4 $$ , where τ $$ \tau $$ , h 1 $$ {h}_1 $$ , and h 2 $$ {h}_2 $$ denote the time-space step sizes, respectively, and the second scheme converges to the space-time second-order accuracy. Finally, the numerical results verify the correctness of the theoretical analysis and show that the method of this article is competitive with the existing research work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信