有限群的质因数与共轭类的个数

IF 0.6 3区 数学 Q3 MATHEMATICS
THOMAS MICHAEL KELLER, ALEXANDER MORETÓ
{"title":"有限群的质因数与共轭类的个数","authors":"THOMAS MICHAEL KELLER, ALEXANDER MORETÓ","doi":"10.1017/s030500412300035x","DOIUrl":null,"url":null,"abstract":"We prove that there exists a universal constant <jats:italic>D</jats:italic> such that if <jats:italic>p</jats:italic> is a prime divisor of the index of the Fitting subgroup of a finite group <jats:italic>G</jats:italic>, then the number of conjugacy classes of <jats:italic>G</jats:italic> is at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030500412300035X_inline1.png\" /> <jats:tex-math> $Dp/\\log_2p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We conjecture that we can take <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030500412300035X_inline2.png\" /> <jats:tex-math> $D=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and prove that for solvable groups, we can take <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030500412300035X_inline3.png\" /> <jats:tex-math> $D=1/3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prime divisors and the number of conjugacy classes of finite groups\",\"authors\":\"THOMAS MICHAEL KELLER, ALEXANDER MORETÓ\",\"doi\":\"10.1017/s030500412300035x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that there exists a universal constant <jats:italic>D</jats:italic> such that if <jats:italic>p</jats:italic> is a prime divisor of the index of the Fitting subgroup of a finite group <jats:italic>G</jats:italic>, then the number of conjugacy classes of <jats:italic>G</jats:italic> is at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030500412300035X_inline1.png\\\" /> <jats:tex-math> $Dp/\\\\log_2p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We conjecture that we can take <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030500412300035X_inline2.png\\\" /> <jats:tex-math> $D=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and prove that for solvable groups, we can take <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030500412300035X_inline3.png\\\" /> <jats:tex-math> $D=1/3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s030500412300035x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s030500412300035x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了存在一个普适常数D,使得如果p是有限群G的拟合子群的指标的素因子,则G的共轭类的个数至少为$Dp/\log_2p$。我们推测可以取D=1并且证明对于可解群,可以取D=1/3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prime divisors and the number of conjugacy classes of finite groups
We prove that there exists a universal constant D such that if p is a prime divisor of the index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of G is at least $Dp/\log_2p$ . We conjecture that we can take $D=1$ and prove that for solvable groups, we can take $D=1/3$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信