{"title":"有限群的质因数与共轭类的个数","authors":"THOMAS MICHAEL KELLER, ALEXANDER MORETÓ","doi":"10.1017/s030500412300035x","DOIUrl":null,"url":null,"abstract":"We prove that there exists a universal constant <jats:italic>D</jats:italic> such that if <jats:italic>p</jats:italic> is a prime divisor of the index of the Fitting subgroup of a finite group <jats:italic>G</jats:italic>, then the number of conjugacy classes of <jats:italic>G</jats:italic> is at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030500412300035X_inline1.png\" /> <jats:tex-math> $Dp/\\log_2p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We conjecture that we can take <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030500412300035X_inline2.png\" /> <jats:tex-math> $D=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and prove that for solvable groups, we can take <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030500412300035X_inline3.png\" /> <jats:tex-math> $D=1/3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prime divisors and the number of conjugacy classes of finite groups\",\"authors\":\"THOMAS MICHAEL KELLER, ALEXANDER MORETÓ\",\"doi\":\"10.1017/s030500412300035x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that there exists a universal constant <jats:italic>D</jats:italic> such that if <jats:italic>p</jats:italic> is a prime divisor of the index of the Fitting subgroup of a finite group <jats:italic>G</jats:italic>, then the number of conjugacy classes of <jats:italic>G</jats:italic> is at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030500412300035X_inline1.png\\\" /> <jats:tex-math> $Dp/\\\\log_2p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We conjecture that we can take <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030500412300035X_inline2.png\\\" /> <jats:tex-math> $D=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and prove that for solvable groups, we can take <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030500412300035X_inline3.png\\\" /> <jats:tex-math> $D=1/3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s030500412300035x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s030500412300035x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Prime divisors and the number of conjugacy classes of finite groups
We prove that there exists a universal constant D such that if p is a prime divisor of the index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of G is at least $Dp/\log_2p$ . We conjecture that we can take $D=1$ and prove that for solvable groups, we can take $D=1/3$ .
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.