随机动力系统的Bohl-Perron定理

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Nguyen Huu Du, Tran Manh Cuong, Ta Thi Trang
{"title":"随机动力系统的Bohl-Perron定理","authors":"Nguyen Huu Du, Tran Manh Cuong, Ta Thi Trang","doi":"10.1142/s0219493723500107","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the Bohl–Perron Theorem for linear random dynamical systems. We prove that the tempered exponential stability of a linear co-cycle is equivalent to the boundedness of solutions for inherit difference equation. Paper also proves a similar concept for co-cycle admitting a tempered exponential dichotomy.</p>","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bohl–Perron theorem for random dynamical systems\",\"authors\":\"Nguyen Huu Du, Tran Manh Cuong, Ta Thi Trang\",\"doi\":\"10.1142/s0219493723500107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the Bohl–Perron Theorem for linear random dynamical systems. We prove that the tempered exponential stability of a linear co-cycle is equivalent to the boundedness of solutions for inherit difference equation. Paper also proves a similar concept for co-cycle admitting a tempered exponential dichotomy.</p>\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493723500107\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493723500107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究线性随机动力系统的Bohl-Perron定理。证明了一类线性共环的缓调指数稳定性等价于一类遗传差分方程解的有界性。本文还证明了一个类似的共环的概念,承认一个缓变指数二分法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bohl–Perron theorem for random dynamical systems

In this paper, we consider the Bohl–Perron Theorem for linear random dynamical systems. We prove that the tempered exponential stability of a linear co-cycle is equivalent to the boundedness of solutions for inherit difference equation. Paper also proves a similar concept for co-cycle admitting a tempered exponential dichotomy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信