正则图中的随机完美匹配

Bertille Granet, Felix Joos
{"title":"正则图中的随机完美匹配","authors":"Bertille Granet, Felix Joos","doi":"10.1002/rsa.21172","DOIUrl":null,"url":null,"abstract":"We prove that in all regular robust expanders <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0001\" display=\"inline\" location=\"graphic/rsa21172-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math>, every edge is asymptotically equally likely contained in a uniformly chosen perfect matching <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0002\" display=\"inline\" location=\"graphic/rsa21172-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>M</mi>\n</mrow>\n$$ M $$</annotation>\n</semantics></math>. We also show that given any fixed matching or spanning regular graph <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0003\" display=\"inline\" location=\"graphic/rsa21172-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>N</mi>\n</mrow>\n$$ N $$</annotation>\n</semantics></math> in <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0004\" display=\"inline\" location=\"graphic/rsa21172-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math>, the random variable <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0005\" display=\"inline\" location=\"graphic/rsa21172-math-0005.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo stretchy=\"false\">|</mo>\n<mi>M</mi>\n<mo>∩</mo>\n<mi>E</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>N</mi>\n<mo stretchy=\"false\">)</mo>\n<mo stretchy=\"false\">|</mo>\n</mrow>\n$$ \\mid M\\cap E(N)\\mid $$</annotation>\n</semantics></math> is approximately Poisson distributed. This in particular confirms a conjecture and a question due to Spiro and Surya, and complements results due to Kahn and Kim who proved that in a regular graph every vertex is asymptotically equally likely contained in a uniformly chosen matching. Our proofs rely on the switching method and the fact that simple random walks mix rapidly in robust expanders.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"179 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random perfect matchings in regular graphs\",\"authors\":\"Bertille Granet, Felix Joos\",\"doi\":\"10.1002/rsa.21172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that in all regular robust expanders <math altimg=\\\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21172-math-0001.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>G</mi>\\n</mrow>\\n$$ G $$</annotation>\\n</semantics></math>, every edge is asymptotically equally likely contained in a uniformly chosen perfect matching <math altimg=\\\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21172-math-0002.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>M</mi>\\n</mrow>\\n$$ M $$</annotation>\\n</semantics></math>. We also show that given any fixed matching or spanning regular graph <math altimg=\\\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21172-math-0003.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>N</mi>\\n</mrow>\\n$$ N $$</annotation>\\n</semantics></math> in <math altimg=\\\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21172-math-0004.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>G</mi>\\n</mrow>\\n$$ G $$</annotation>\\n</semantics></math>, the random variable <math altimg=\\\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21172-math-0005.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mo stretchy=\\\"false\\\">|</mo>\\n<mi>M</mi>\\n<mo>∩</mo>\\n<mi>E</mi>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>N</mi>\\n<mo stretchy=\\\"false\\\">)</mo>\\n<mo stretchy=\\\"false\\\">|</mo>\\n</mrow>\\n$$ \\\\mid M\\\\cap E(N)\\\\mid $$</annotation>\\n</semantics></math> is approximately Poisson distributed. This in particular confirms a conjecture and a question due to Spiro and Surya, and complements results due to Kahn and Kim who proved that in a regular graph every vertex is asymptotically equally likely contained in a uniformly chosen matching. Our proofs rely on the switching method and the fact that simple random walks mix rapidly in robust expanders.\",\"PeriodicalId\":20948,\"journal\":{\"name\":\"Random Structures and Algorithms\",\"volume\":\"179 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在所有正则鲁棒展开G $$ G $$中,每条边都是渐近等可能包含在一致选择的完美匹配M $$ M $$中。我们还证明了给定任意固定匹配或生成正则图N $$ N $$在G $$ G $$中,随机变量|M∩E(N)| $$ \mid M\cap E(N)\mid $$近似泊松分布。这特别证实了Spiro和Surya的一个猜想和问题,并补充了Kahn和Kim的结果,他们证明了在正则图中,每个顶点都是渐近等可能包含在一致选择的匹配中。我们的证明依赖于切换方法和简单随机漫步在鲁棒扩展器中快速混合的事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random perfect matchings in regular graphs
We prove that in all regular robust expanders G $$ G $$ , every edge is asymptotically equally likely contained in a uniformly chosen perfect matching M $$ M $$ . We also show that given any fixed matching or spanning regular graph N $$ N $$ in G $$ G $$ , the random variable | M E ( N ) | $$ \mid M\cap E(N)\mid $$ is approximately Poisson distributed. This in particular confirms a conjecture and a question due to Spiro and Surya, and complements results due to Kahn and Kim who proved that in a regular graph every vertex is asymptotically equally likely contained in a uniformly chosen matching. Our proofs rely on the switching method and the fact that simple random walks mix rapidly in robust expanders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信