具有$$\text {ReLU}^k$$激活函数的两层网络:巴伦空间和导数逼近

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev
{"title":"具有$$\\text {ReLU}^k$$激活函数的两层网络:巴伦空间和导数逼近","authors":"Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev","doi":"10.1007/s00211-023-01384-6","DOIUrl":null,"url":null,"abstract":"<p>We investigate the use of two-layer networks with the rectified power unit, which is called the <span>\\(\\text {ReLU}^k\\)</span> activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the <span>\\(\\text {ReLU}^k\\)</span> activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-layer networks with the $$\\\\text {ReLU}^k$$ activation function: Barron spaces and derivative approximation\",\"authors\":\"Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev\",\"doi\":\"10.1007/s00211-023-01384-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the use of two-layer networks with the rectified power unit, which is called the <span>\\\\(\\\\text {ReLU}^k\\\\)</span> activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the <span>\\\\(\\\\text {ReLU}^k\\\\)</span> activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01384-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01384-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了两层网络与整流功率单元的使用,称为\(\text {ReLU}^k\)激活函数,用于函数和导数逼近。通过扩展和校准相应的巴伦空间,我们证明了具有\(\text {ReLU}^k\)激活函数的两层网络设计得很好,可以同时近似未知函数及其导数。当测量结果有噪声时,我们提出了一种Tikhonov型正则化方法,并在正则化参数选择适当时给出了误差范围。几个数值算例证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two-layer networks with the $$\text {ReLU}^k$$ activation function: Barron spaces and derivative approximation

Two-layer networks with the $$\text {ReLU}^k$$ activation function: Barron spaces and derivative approximation

We investigate the use of two-layer networks with the rectified power unit, which is called the \(\text {ReLU}^k\) activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the \(\text {ReLU}^k\) activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信