{"title":"使用挤压器的运行时复杂度界限","authors":"Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky, Sharon Shoham","doi":"https://dl.acm.org/doi/full/10.1145/3527632","DOIUrl":null,"url":null,"abstract":"<p>Determining upper bounds on the time complexity of a program is a fundamental problem with a variety of applications, such as performance debugging, resource certification, and compile-time optimizations. Automated techniques for cost analysis excel at bounding the resource complexity of programs that use integer values and linear arithmetic. Unfortunately, they fall short when the complexity depends more intricately on the evolution of data during execution. In such cases, state-of-the-art analyzers have shown to produce loose bounds, or even no bound at all.</p><p>We propose a novel technique that generalizes the common notion of recurrence relations based on ranking functions. Existing methods usually unfold one loop iteration and examine the resulting arithmetic relations between variables. These relations assist in establishing a recurrence that bounds the number of loop iterations. We propose a different approach, where we derive recurrences by comparing <i>whole traces</i> with <i>whole traces</i> of a lower rank, avoiding the need to analyze the complexity of intermediate states. We offer a set of global properties, defined with respect to whole traces, that facilitate such a comparison and show that these properties can be checked efficiently using a handful of local conditions. To this end, we adapt <i>state squeezers</i>, an induction mechanism previously used for verifying safety properties. We demonstrate that this technique encompasses the reasoning power of bounded unfolding, and more. We present some seemingly innocuous, yet intricate, examples that previous tools based on <i>cost relations</i> and control flow analysis fail to solve, and that our squeezer-powered approach succeeds.</p>","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"179 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Runtime Complexity Bounds Using Squeezers\",\"authors\":\"Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky, Sharon Shoham\",\"doi\":\"https://dl.acm.org/doi/full/10.1145/3527632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Determining upper bounds on the time complexity of a program is a fundamental problem with a variety of applications, such as performance debugging, resource certification, and compile-time optimizations. Automated techniques for cost analysis excel at bounding the resource complexity of programs that use integer values and linear arithmetic. Unfortunately, they fall short when the complexity depends more intricately on the evolution of data during execution. In such cases, state-of-the-art analyzers have shown to produce loose bounds, or even no bound at all.</p><p>We propose a novel technique that generalizes the common notion of recurrence relations based on ranking functions. Existing methods usually unfold one loop iteration and examine the resulting arithmetic relations between variables. These relations assist in establishing a recurrence that bounds the number of loop iterations. We propose a different approach, where we derive recurrences by comparing <i>whole traces</i> with <i>whole traces</i> of a lower rank, avoiding the need to analyze the complexity of intermediate states. We offer a set of global properties, defined with respect to whole traces, that facilitate such a comparison and show that these properties can be checked efficiently using a handful of local conditions. To this end, we adapt <i>state squeezers</i>, an induction mechanism previously used for verifying safety properties. We demonstrate that this technique encompasses the reasoning power of bounded unfolding, and more. We present some seemingly innocuous, yet intricate, examples that previous tools based on <i>cost relations</i> and control flow analysis fail to solve, and that our squeezer-powered approach succeeds.</p>\",\"PeriodicalId\":50939,\"journal\":{\"name\":\"ACM Transactions on Programming Languages and Systems\",\"volume\":\"179 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Programming Languages and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/full/10.1145/3527632\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/full/10.1145/3527632","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Determining upper bounds on the time complexity of a program is a fundamental problem with a variety of applications, such as performance debugging, resource certification, and compile-time optimizations. Automated techniques for cost analysis excel at bounding the resource complexity of programs that use integer values and linear arithmetic. Unfortunately, they fall short when the complexity depends more intricately on the evolution of data during execution. In such cases, state-of-the-art analyzers have shown to produce loose bounds, or even no bound at all.
We propose a novel technique that generalizes the common notion of recurrence relations based on ranking functions. Existing methods usually unfold one loop iteration and examine the resulting arithmetic relations between variables. These relations assist in establishing a recurrence that bounds the number of loop iterations. We propose a different approach, where we derive recurrences by comparing whole traces with whole traces of a lower rank, avoiding the need to analyze the complexity of intermediate states. We offer a set of global properties, defined with respect to whole traces, that facilitate such a comparison and show that these properties can be checked efficiently using a handful of local conditions. To this end, we adapt state squeezers, an induction mechanism previously used for verifying safety properties. We demonstrate that this technique encompasses the reasoning power of bounded unfolding, and more. We present some seemingly innocuous, yet intricate, examples that previous tools based on cost relations and control flow analysis fail to solve, and that our squeezer-powered approach succeeds.
期刊介绍:
ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects:
language design for sequential and parallel programming
programming language implementation
programming language semantics
compilers and interpreters
runtime systems for program execution
storage allocation and garbage collection
languages and methods for writing program specifications
languages and methods for secure and reliable programs
testing and verification of programs