Jyy-I Hong, Joseph Najnudel, Siang-Mao Rao, Ju-Yi Yen
{"title":"随机分配:巴林斯基-杨不可能性的随机解","authors":"Jyy-I Hong, Joseph Najnudel, Siang-Mao Rao, Ju-Yi Yen","doi":"10.1007/s11009-023-10070-x","DOIUrl":null,"url":null,"abstract":"<p>An apportionment paradox occurs when the rules for apportionment in a political system or distribution system produce results which seem to violate common sense. For example, The Alabama paradox occurs when the total number of seats increases but decreases the allocated number of a state and the population paradox occurs when the population of a state increases but its allocated number of seats decreases. The Balinski-Young impossibility theorem showed that there is no deterministic apportionment method that can avoid the violation of the quota rule and doesn’t have both the Alabama and the population paradoxes. In this paper, we propose a randomized apportionment method as a stochastic solution to the Balinski-Young impossibility.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Apportionment: A Stochastic Solution to the Balinski-Young Impossibility\",\"authors\":\"Jyy-I Hong, Joseph Najnudel, Siang-Mao Rao, Ju-Yi Yen\",\"doi\":\"10.1007/s11009-023-10070-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An apportionment paradox occurs when the rules for apportionment in a political system or distribution system produce results which seem to violate common sense. For example, The Alabama paradox occurs when the total number of seats increases but decreases the allocated number of a state and the population paradox occurs when the population of a state increases but its allocated number of seats decreases. The Balinski-Young impossibility theorem showed that there is no deterministic apportionment method that can avoid the violation of the quota rule and doesn’t have both the Alabama and the population paradoxes. In this paper, we propose a randomized apportionment method as a stochastic solution to the Balinski-Young impossibility.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-023-10070-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-023-10070-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Random Apportionment: A Stochastic Solution to the Balinski-Young Impossibility
An apportionment paradox occurs when the rules for apportionment in a political system or distribution system produce results which seem to violate common sense. For example, The Alabama paradox occurs when the total number of seats increases but decreases the allocated number of a state and the population paradox occurs when the population of a state increases but its allocated number of seats decreases. The Balinski-Young impossibility theorem showed that there is no deterministic apportionment method that can avoid the violation of the quota rule and doesn’t have both the Alabama and the population paradoxes. In this paper, we propose a randomized apportionment method as a stochastic solution to the Balinski-Young impossibility.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.