{"title":"蒙日-安普瑞引力作为一个良好的速率函数Γ-limit","authors":"Luigi Ambrosio, Aymeric Baradat, Yann Brenier","doi":"10.2140/apde.2023.16.2005","DOIUrl":null,"url":null,"abstract":"<p>Monge–Ampère gravitation is a modification of the classical Newtonian gravitation where the linear Poisson equation is replaced by the nonlinear Monge–Ampère equation. This paper is concerned with the rigorous derivation of Monge–Ampère gravitation for a finite number of particles from the stochastic model of a Brownian point cloud, following the formal ideas of a recent work by Brenier (<span>Bull. Inst. Math.</span>\n<span>Acad. Sin. </span><span>11</span>:1(2016), 23–41). This is done in two steps. First, we compute the good rate function corresponding to a large deviation problem related to the Brownian point cloud at fixed positive diffusivity. Second, we study the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Γ</mi></math>-convergence of this good rate function, as the diffusivity tends to zero, toward a (nonsmooth) Lagrangian encoding the Monge–Ampère dynamic. Surprisingly, the singularities of the limiting Lagrangian correspond to dissipative phenomena. As an illustration, we show that they lead to sticky collisions in one space dimension. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Monge–Ampère gravitation as a Γ-limit of good rate functions\",\"authors\":\"Luigi Ambrosio, Aymeric Baradat, Yann Brenier\",\"doi\":\"10.2140/apde.2023.16.2005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monge–Ampère gravitation is a modification of the classical Newtonian gravitation where the linear Poisson equation is replaced by the nonlinear Monge–Ampère equation. This paper is concerned with the rigorous derivation of Monge–Ampère gravitation for a finite number of particles from the stochastic model of a Brownian point cloud, following the formal ideas of a recent work by Brenier (<span>Bull. Inst. Math.</span>\\n<span>Acad. Sin. </span><span>11</span>:1(2016), 23–41). This is done in two steps. First, we compute the good rate function corresponding to a large deviation problem related to the Brownian point cloud at fixed positive diffusivity. Second, we study the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Γ</mi></math>-convergence of this good rate function, as the diffusivity tends to zero, toward a (nonsmooth) Lagrangian encoding the Monge–Ampère dynamic. Surprisingly, the singularities of the limiting Lagrangian correspond to dissipative phenomena. As an illustration, we show that they lead to sticky collisions in one space dimension. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2023.16.2005\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.2005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Monge–Ampère gravitation as a Γ-limit of good rate functions
Monge–Ampère gravitation is a modification of the classical Newtonian gravitation where the linear Poisson equation is replaced by the nonlinear Monge–Ampère equation. This paper is concerned with the rigorous derivation of Monge–Ampère gravitation for a finite number of particles from the stochastic model of a Brownian point cloud, following the formal ideas of a recent work by Brenier (Bull. Inst. Math.Acad. Sin. 11:1(2016), 23–41). This is done in two steps. First, we compute the good rate function corresponding to a large deviation problem related to the Brownian point cloud at fixed positive diffusivity. Second, we study the -convergence of this good rate function, as the diffusivity tends to zero, toward a (nonsmooth) Lagrangian encoding the Monge–Ampère dynamic. Surprisingly, the singularities of the limiting Lagrangian correspond to dissipative phenomena. As an illustration, we show that they lead to sticky collisions in one space dimension.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.