{"title":"颗粒气凝胶碳网状电极提高了流式电容去离子电池的脱盐效率,对合成样品和实际样品中的离子进行了去除","authors":"Bahram Roshan, Hassan Rasoulzadeh, Mohamadreza Massoudinejad, Mohsen Saadani, Daryoush Sanaei","doi":"10.2166/wrd.2021.067","DOIUrl":null,"url":null,"abstract":"<p>Flow-through capacitive deionization (FTCDI) is a traditional improved flow-by CDI cellular structure, used to remove ions from aqueous solutions. In this study, a new FTCDI was designed consisting of mesh electrodes (ME) containing ion-exchange membranes (IEM) and aerogel carbon granules with a specific surface area of 489 m<sup>2</sup>/g. All analyses and experiments performed showed that the new design can remove nitrate, phosphate, sodium, calcium, and chloride. Under optimal conditions, the new FTCDI system can remove 82.5, 49, 85, and 90% of sodium chloride, calcium chloride, nitrate, and phosphate with a maximum input concentration of 450 mg/L, 450 mg/L, 70 mg/L, and 3 mg/L, respectively. The efficiency of this system was also evaluated for real samples. Findings of the study showed that if the initial amount of turbidity is 12 NTU, total soluble solids (TDS) 1,700 mg/L, total hardness 540 mg/L, phosphate 0.09 mg/L, nitrate 28.8 mg/L, and electrical conductivity (EC) 3,480 μs/cm, the system can remove 25, 23.5, 33.3, 66.6, 54.4, and 39.1%, respectively.</p>","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced desalination efficiency of flow-through capacitive deionization cell by mesh electrode with granular aerogel carbon in the removal of ions from synthetic and real samples\",\"authors\":\"Bahram Roshan, Hassan Rasoulzadeh, Mohamadreza Massoudinejad, Mohsen Saadani, Daryoush Sanaei\",\"doi\":\"10.2166/wrd.2021.067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow-through capacitive deionization (FTCDI) is a traditional improved flow-by CDI cellular structure, used to remove ions from aqueous solutions. In this study, a new FTCDI was designed consisting of mesh electrodes (ME) containing ion-exchange membranes (IEM) and aerogel carbon granules with a specific surface area of 489 m<sup>2</sup>/g. All analyses and experiments performed showed that the new design can remove nitrate, phosphate, sodium, calcium, and chloride. Under optimal conditions, the new FTCDI system can remove 82.5, 49, 85, and 90% of sodium chloride, calcium chloride, nitrate, and phosphate with a maximum input concentration of 450 mg/L, 450 mg/L, 70 mg/L, and 3 mg/L, respectively. The efficiency of this system was also evaluated for real samples. Findings of the study showed that if the initial amount of turbidity is 12 NTU, total soluble solids (TDS) 1,700 mg/L, total hardness 540 mg/L, phosphate 0.09 mg/L, nitrate 28.8 mg/L, and electrical conductivity (EC) 3,480 μs/cm, the system can remove 25, 23.5, 33.3, 66.6, 54.4, and 39.1%, respectively.</p>\",\"PeriodicalId\":17556,\"journal\":{\"name\":\"Journal of Water Reuse and Desalination\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Reuse and Desalination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2021.067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2021.067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Enhanced desalination efficiency of flow-through capacitive deionization cell by mesh electrode with granular aerogel carbon in the removal of ions from synthetic and real samples
Flow-through capacitive deionization (FTCDI) is a traditional improved flow-by CDI cellular structure, used to remove ions from aqueous solutions. In this study, a new FTCDI was designed consisting of mesh electrodes (ME) containing ion-exchange membranes (IEM) and aerogel carbon granules with a specific surface area of 489 m2/g. All analyses and experiments performed showed that the new design can remove nitrate, phosphate, sodium, calcium, and chloride. Under optimal conditions, the new FTCDI system can remove 82.5, 49, 85, and 90% of sodium chloride, calcium chloride, nitrate, and phosphate with a maximum input concentration of 450 mg/L, 450 mg/L, 70 mg/L, and 3 mg/L, respectively. The efficiency of this system was also evaluated for real samples. Findings of the study showed that if the initial amount of turbidity is 12 NTU, total soluble solids (TDS) 1,700 mg/L, total hardness 540 mg/L, phosphate 0.09 mg/L, nitrate 28.8 mg/L, and electrical conductivity (EC) 3,480 μs/cm, the system can remove 25, 23.5, 33.3, 66.6, 54.4, and 39.1%, respectively.
期刊介绍:
Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.