$$l_{1}$$ 移位四边形柱面图的可嵌入性

IF 0.6 4区 数学 Q3 MATHEMATICS
Guangfu Wang, Zhikun Xiong, Lijun Chen
{"title":"$$l_{1}$$ 移位四边形柱面图的可嵌入性","authors":"Guangfu Wang, Zhikun Xiong, Lijun Chen","doi":"10.1007/s00373-023-02725-w","DOIUrl":null,"url":null,"abstract":"<p>A connected graph <i>G</i> is called <span>\\(l_{1}\\)</span>-embeddable, if it can be isometrically embedded into the <span>\\(l_{1}\\)</span>-space. The shifted quadrilateral cylinder graph <span>\\(O_{m,n,k}\\)</span> is a class of quadrilateral tilings on a cylinder obtained by rolling the grid graph <span>\\(P_{m}\\square P_{n}\\)</span> via shifting <i>k</i> positions. In this article, we determine that all the <span>\\(O_{m,n,k}\\)</span> are not <span>\\(l_{1}\\)</span>-embeddable except for <span>\\(O_{m,n,0}\\)</span> and <span>\\(O_{m,3,1}\\)</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"195 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$l_{1}$$ -embeddability of shifted quadrilateral cylinder graphs\",\"authors\":\"Guangfu Wang, Zhikun Xiong, Lijun Chen\",\"doi\":\"10.1007/s00373-023-02725-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A connected graph <i>G</i> is called <span>\\\\(l_{1}\\\\)</span>-embeddable, if it can be isometrically embedded into the <span>\\\\(l_{1}\\\\)</span>-space. The shifted quadrilateral cylinder graph <span>\\\\(O_{m,n,k}\\\\)</span> is a class of quadrilateral tilings on a cylinder obtained by rolling the grid graph <span>\\\\(P_{m}\\\\square P_{n}\\\\)</span> via shifting <i>k</i> positions. In this article, we determine that all the <span>\\\\(O_{m,n,k}\\\\)</span> are not <span>\\\\(l_{1}\\\\)</span>-embeddable except for <span>\\\\(O_{m,n,0}\\\\)</span> and <span>\\\\(O_{m,3,1}\\\\)</span>.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02725-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02725-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

称为连通图G \(l_{1}\)-可嵌入,如果它可以等距嵌入到 \(l_{1}\)-space。移位的四边形柱面图 \(O_{m,n,k}\) 是否通过滚动网格图获得圆柱体上的一类四边形平铺 \(P_{m}\square P_{n}\) 通过移动k个位置。在本文中,我们确定所有的 \(O_{m,n,k}\) 不是 \(l_{1}\)-可嵌入的,除了 \(O_{m,n,0}\) 和 \(O_{m,3,1}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。

$$l_{1}$$ -embeddability of shifted quadrilateral cylinder graphs

$$l_{1}$$ -embeddability of shifted quadrilateral cylinder graphs

A connected graph G is called \(l_{1}\)-embeddable, if it can be isometrically embedded into the \(l_{1}\)-space. The shifted quadrilateral cylinder graph \(O_{m,n,k}\) is a class of quadrilateral tilings on a cylinder obtained by rolling the grid graph \(P_{m}\square P_{n}\) via shifting k positions. In this article, we determine that all the \(O_{m,n,k}\) are not \(l_{1}\)-embeddable except for \(O_{m,n,0}\) and \(O_{m,3,1}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信