{"title":"基于同中子数核素链的核质量新关系式","authors":"Xiao-Liang Liu, Bao-Bao Jiao, Xiang-Ting Meng","doi":"10.1142/s0218301322500999","DOIUrl":null,"url":null,"abstract":"<p>There are many studies in Odd–Even staggering (OES) of nuclear masses, but the research on nuclear masses by using the systematicness of OES is indeed very few. In this work, we analyze the relationship among the four neighboring nuclei based on the OES of nuclide chain with the same number of neutrons in atomic mass evaluation database (AME2016 database). Our purpose in this paper is to describe an empirical formula with one constant for OES of nuclear masses that can be useful in describing and predicting nuclear masses with mass number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span>. With the empirical formula and AME2016 database, the root-mean-square deviation (RMSD) of the nuclei that we have successfully obtained 172<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV for <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span> (the RMSD is 140<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>5</mn><mn>8</mn></math></span><span></span>). This paper also uses Levenberg–Marquart (L-M) neural network approach to study the OES of nuclear masses (<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span>, RMSD <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo>≃</mo><mn>1</mn><mn>4</mn><mn>3</mn></math></span><span></span><span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV; <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>5</mn><mn>8</mn></math></span><span></span>, RMSD <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo>≃</mo><mn>1</mn><mn>1</mn><mn>9</mn></math></span><span></span><span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV). The results show that the RMSD of nuclear masses for <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span> based on neural network approach 30<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>keV decreases than that based on empirical formula (the accuracy is increased by about 17%). In addition, the predicted values based on the empirical formula and L-M neural network approach are consistent with the values in AME2020 database, and the difference between our predicted values based on AME2016 database and experimental values measured in recent years is small. These results show that the new relation for nuclear masses has good simplicity, accuracy and reliability. Accurate nuclear mass is helpful to the research of nuclear physics, nuclear technology and astrophysics.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"18 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new relation for nuclear masses based on the nuclide chain with the same number of neutrons\",\"authors\":\"Xiao-Liang Liu, Bao-Bao Jiao, Xiang-Ting Meng\",\"doi\":\"10.1142/s0218301322500999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There are many studies in Odd–Even staggering (OES) of nuclear masses, but the research on nuclear masses by using the systematicness of OES is indeed very few. In this work, we analyze the relationship among the four neighboring nuclei based on the OES of nuclide chain with the same number of neutrons in atomic mass evaluation database (AME2016 database). Our purpose in this paper is to describe an empirical formula with one constant for OES of nuclear masses that can be useful in describing and predicting nuclear masses with mass number <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span>. With the empirical formula and AME2016 database, the root-mean-square deviation (RMSD) of the nuclei that we have successfully obtained 172<span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV for <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span> (the RMSD is 140<span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV for <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>5</mn><mn>8</mn></math></span><span></span>). This paper also uses Levenberg–Marquart (L-M) neural network approach to study the OES of nuclear masses (<span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span>, RMSD <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>≃</mo><mn>1</mn><mn>4</mn><mn>3</mn></math></span><span></span><span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV; <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>5</mn><mn>8</mn></math></span><span></span>, RMSD <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>≃</mo><mn>1</mn><mn>1</mn><mn>9</mn></math></span><span></span><span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV). The results show that the RMSD of nuclear masses for <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>≥</mo><mn>1</mn><mn>0</mn><mn>0</mn></math></span><span></span> based on neural network approach 30<span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>keV decreases than that based on empirical formula (the accuracy is increased by about 17%). In addition, the predicted values based on the empirical formula and L-M neural network approach are consistent with the values in AME2020 database, and the difference between our predicted values based on AME2016 database and experimental values measured in recent years is small. These results show that the new relation for nuclear masses has good simplicity, accuracy and reliability. Accurate nuclear mass is helpful to the research of nuclear physics, nuclear technology and astrophysics.</p>\",\"PeriodicalId\":50306,\"journal\":{\"name\":\"International Journal of Modern Physics E\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218301322500999\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218301322500999","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
A new relation for nuclear masses based on the nuclide chain with the same number of neutrons
There are many studies in Odd–Even staggering (OES) of nuclear masses, but the research on nuclear masses by using the systematicness of OES is indeed very few. In this work, we analyze the relationship among the four neighboring nuclei based on the OES of nuclide chain with the same number of neutrons in atomic mass evaluation database (AME2016 database). Our purpose in this paper is to describe an empirical formula with one constant for OES of nuclear masses that can be useful in describing and predicting nuclear masses with mass number . With the empirical formula and AME2016 database, the root-mean-square deviation (RMSD) of the nuclei that we have successfully obtained 172keV for (the RMSD is 140keV for ). This paper also uses Levenberg–Marquart (L-M) neural network approach to study the OES of nuclear masses (, RMSD keV; , RMSD keV). The results show that the RMSD of nuclear masses for based on neural network approach 30keV decreases than that based on empirical formula (the accuracy is increased by about 17%). In addition, the predicted values based on the empirical formula and L-M neural network approach are consistent with the values in AME2020 database, and the difference between our predicted values based on AME2016 database and experimental values measured in recent years is small. These results show that the new relation for nuclear masses has good simplicity, accuracy and reliability. Accurate nuclear mass is helpful to the research of nuclear physics, nuclear technology and astrophysics.
期刊介绍:
This journal covers the topics on experimental and theoretical nuclear physics, and its applications and interface with astrophysics and particle physics. The journal publishes research articles as well as review articles on topics of current interest.