Ji Zhang,Jun Qian,Tao Yang,Hai-Yan Dong,Rui-Juan Wang
{"title":"基于中医分形理论的数字化舌图及舌苔纹理特征分析与识别。","authors":"Ji Zhang,Jun Qian,Tao Yang,Hai-Yan Dong,Rui-Juan Wang","doi":"10.1080/24699322.2018.1557890","DOIUrl":null,"url":null,"abstract":"Simple fractal dimensions have been proposed for use in the analysis of the characteristics of digitized tongue pictures and tongue coating texture, which could further the establishment of objectified classification criteria under the conditions of expanding sample size. However, detailed descriptions on simple fractal dimensions have been limited. Therefore, BP (back propagation) neural network model classifiers could be designed by further calculation of the multiple fractal spectrum characteristics of digitized tongue pictures in order to classify and recognize the thin/thick or greasy characteristics of tongue coating.The fractal dimensions of sample data of 587 digitized tongue pictures were collected in a standard environment. A statistical analysis was conducted on the calculation results of the sample data, and the sensitivity of the fractal dimensions to the thin/thick and greasy characteristics of digitized tongue pictures was observed. As the overlap region resulted from a range of values of a single parameter, another eight characteristic parameters of the multiple fractal spectra of the digitized tongue pictures were further proposed as the elements in the input layer of the three-layers BP neural network. Automatic recognition classifiers were designed and trained for the characteristics of digitized tongue pictures and tongue coating textures.The simple fractal dimension was sensitive to the thin/thick and greasy characteristics of digitized tongue pictures and could better judge the characteristics of the thickness of the tongue coating. A classifier with characteristic parameters of multiple fractal spectra as the input vectors identified by the BP neural network models could effectively increase the accuracy rate judged by the characteristics of the tongue coating texture.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"207 1","pages":"1-11"},"PeriodicalIF":1.5000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and recognition of characteristics of digitized tongue pictures and tongue coating texture based on fractal theory in traditional Chinese medicine.\",\"authors\":\"Ji Zhang,Jun Qian,Tao Yang,Hai-Yan Dong,Rui-Juan Wang\",\"doi\":\"10.1080/24699322.2018.1557890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple fractal dimensions have been proposed for use in the analysis of the characteristics of digitized tongue pictures and tongue coating texture, which could further the establishment of objectified classification criteria under the conditions of expanding sample size. However, detailed descriptions on simple fractal dimensions have been limited. Therefore, BP (back propagation) neural network model classifiers could be designed by further calculation of the multiple fractal spectrum characteristics of digitized tongue pictures in order to classify and recognize the thin/thick or greasy characteristics of tongue coating.The fractal dimensions of sample data of 587 digitized tongue pictures were collected in a standard environment. A statistical analysis was conducted on the calculation results of the sample data, and the sensitivity of the fractal dimensions to the thin/thick and greasy characteristics of digitized tongue pictures was observed. As the overlap region resulted from a range of values of a single parameter, another eight characteristic parameters of the multiple fractal spectra of the digitized tongue pictures were further proposed as the elements in the input layer of the three-layers BP neural network. Automatic recognition classifiers were designed and trained for the characteristics of digitized tongue pictures and tongue coating textures.The simple fractal dimension was sensitive to the thin/thick and greasy characteristics of digitized tongue pictures and could better judge the characteristics of the thickness of the tongue coating. A classifier with characteristic parameters of multiple fractal spectra as the input vectors identified by the BP neural network models could effectively increase the accuracy rate judged by the characteristics of the tongue coating texture.\",\"PeriodicalId\":56051,\"journal\":{\"name\":\"Computer Assisted Surgery\",\"volume\":\"207 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/24699322.2018.1557890\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2018.1557890","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
Analysis and recognition of characteristics of digitized tongue pictures and tongue coating texture based on fractal theory in traditional Chinese medicine.
Simple fractal dimensions have been proposed for use in the analysis of the characteristics of digitized tongue pictures and tongue coating texture, which could further the establishment of objectified classification criteria under the conditions of expanding sample size. However, detailed descriptions on simple fractal dimensions have been limited. Therefore, BP (back propagation) neural network model classifiers could be designed by further calculation of the multiple fractal spectrum characteristics of digitized tongue pictures in order to classify and recognize the thin/thick or greasy characteristics of tongue coating.The fractal dimensions of sample data of 587 digitized tongue pictures were collected in a standard environment. A statistical analysis was conducted on the calculation results of the sample data, and the sensitivity of the fractal dimensions to the thin/thick and greasy characteristics of digitized tongue pictures was observed. As the overlap region resulted from a range of values of a single parameter, another eight characteristic parameters of the multiple fractal spectra of the digitized tongue pictures were further proposed as the elements in the input layer of the three-layers BP neural network. Automatic recognition classifiers were designed and trained for the characteristics of digitized tongue pictures and tongue coating textures.The simple fractal dimension was sensitive to the thin/thick and greasy characteristics of digitized tongue pictures and could better judge the characteristics of the thickness of the tongue coating. A classifier with characteristic parameters of multiple fractal spectra as the input vectors identified by the BP neural network models could effectively increase the accuracy rate judged by the characteristics of the tongue coating texture.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.