{"title":"具有柔性边界的平面Couette流的线性稳定性","authors":"Andrew Walton, Keming Yu","doi":"10.1007/s10665-023-10307-1","DOIUrl":null,"url":null,"abstract":"<p>The linear stability of plane Couette flow subject to one rigid boundary and one flexible boundary is considered at both finite and asymptotically large Reynolds number. The wall flexibility is modelled using a very simple Hooke-type law involving a spring constant <i>K</i> and is incorporated into a boundary condition on the appropriate Orr–Sommerfeld eigenvalue problem. This problem is analyzed at large Reynolds number by the method of matched asymptotic expansions and eigenrelations are derived that demonstrate the existence of neutral modes at finite spring stiffness, propagating with speeds close to that of the rigid wall and possessing wavelengths comparable to the channel width. A large critical value of <i>K</i> is identified at which a new short wavelength asymptotic structure comes into play that describes the entirety of the linear neutral curve. The asymptotic theories compare well with finite Reynolds number Orr–Sommerfeld calculations and demonstrate that only the tiniest amount of wall flexibility is required to destabilize the flow, with the linear neutral curve for the instability emerging as a bifurcation from infinity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The linear stability of plane Couette flow with a compliant boundary\",\"authors\":\"Andrew Walton, Keming Yu\",\"doi\":\"10.1007/s10665-023-10307-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The linear stability of plane Couette flow subject to one rigid boundary and one flexible boundary is considered at both finite and asymptotically large Reynolds number. The wall flexibility is modelled using a very simple Hooke-type law involving a spring constant <i>K</i> and is incorporated into a boundary condition on the appropriate Orr–Sommerfeld eigenvalue problem. This problem is analyzed at large Reynolds number by the method of matched asymptotic expansions and eigenrelations are derived that demonstrate the existence of neutral modes at finite spring stiffness, propagating with speeds close to that of the rigid wall and possessing wavelengths comparable to the channel width. A large critical value of <i>K</i> is identified at which a new short wavelength asymptotic structure comes into play that describes the entirety of the linear neutral curve. The asymptotic theories compare well with finite Reynolds number Orr–Sommerfeld calculations and demonstrate that only the tiniest amount of wall flexibility is required to destabilize the flow, with the linear neutral curve for the instability emerging as a bifurcation from infinity.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10307-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10307-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The linear stability of plane Couette flow with a compliant boundary
The linear stability of plane Couette flow subject to one rigid boundary and one flexible boundary is considered at both finite and asymptotically large Reynolds number. The wall flexibility is modelled using a very simple Hooke-type law involving a spring constant K and is incorporated into a boundary condition on the appropriate Orr–Sommerfeld eigenvalue problem. This problem is analyzed at large Reynolds number by the method of matched asymptotic expansions and eigenrelations are derived that demonstrate the existence of neutral modes at finite spring stiffness, propagating with speeds close to that of the rigid wall and possessing wavelengths comparable to the channel width. A large critical value of K is identified at which a new short wavelength asymptotic structure comes into play that describes the entirety of the linear neutral curve. The asymptotic theories compare well with finite Reynolds number Orr–Sommerfeld calculations and demonstrate that only the tiniest amount of wall flexibility is required to destabilize the flow, with the linear neutral curve for the instability emerging as a bifurcation from infinity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.