基于深度强化学习的串通车辆交通信号控制系统对抗性攻击

IF 7.2 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ao Qu, Yihong Tang, Wei Ma
{"title":"基于深度强化学习的串通车辆交通信号控制系统对抗性攻击","authors":"Ao Qu, Yihong Tang, Wei Ma","doi":"10.1145/3625236","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancements of Internet of Things (IoT) and Artificial Intelligence (AI) have catalyzed the development of adaptive traffic control systems (ATCS) for smart cities. In particular, deep reinforcement learning (DRL) models produce state-of-the-art performance and have great potential for practical applications. In the existing DRL-based ATCS, the controlled signals collect traffic state information from nearby vehicles, and then optimal actions (e.g., switching phases) can be determined based on the collected information. The DRL models fully “trust” that vehicles are sending the true information to the traffic signals, making the ATCS vulnerable to adversarial attacks with falsified information. In view of this, this article first time formulates a novel task in which a group of vehicles can cooperatively send falsified information to “cheat” DRL-based ATCS in order to save their total travel time. To solve the proposed task, we develop <span>CollusionVeh</span>, a generic and effective vehicle-colluding framework composed of a road situation encoder, a vehicle interpreter, and a communication mechanism. We employ our framework to attack established DRL-based ATCS and demonstrate that the total travel time for the colluding vehicles can be significantly reduced with a reasonable number of learning episodes, and the colluding effect will decrease if the number of colluding vehicles increases. Additionally, insights and suggestions for the real-world deployment of DRL-based ATCS are provided. The research outcomes could help improve the reliability and robustness of the ATCS and better protect the smart mobility systems.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"126 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial Attacks on Deep Reinforcement Learning-based Traffic Signal Control Systems with Colluding Vehicles\",\"authors\":\"Ao Qu, Yihong Tang, Wei Ma\",\"doi\":\"10.1145/3625236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid advancements of Internet of Things (IoT) and Artificial Intelligence (AI) have catalyzed the development of adaptive traffic control systems (ATCS) for smart cities. In particular, deep reinforcement learning (DRL) models produce state-of-the-art performance and have great potential for practical applications. In the existing DRL-based ATCS, the controlled signals collect traffic state information from nearby vehicles, and then optimal actions (e.g., switching phases) can be determined based on the collected information. The DRL models fully “trust” that vehicles are sending the true information to the traffic signals, making the ATCS vulnerable to adversarial attacks with falsified information. In view of this, this article first time formulates a novel task in which a group of vehicles can cooperatively send falsified information to “cheat” DRL-based ATCS in order to save their total travel time. To solve the proposed task, we develop <span>CollusionVeh</span>, a generic and effective vehicle-colluding framework composed of a road situation encoder, a vehicle interpreter, and a communication mechanism. We employ our framework to attack established DRL-based ATCS and demonstrate that the total travel time for the colluding vehicles can be significantly reduced with a reasonable number of learning episodes, and the colluding effect will decrease if the number of colluding vehicles increases. Additionally, insights and suggestions for the real-world deployment of DRL-based ATCS are provided. The research outcomes could help improve the reliability and robustness of the ATCS and better protect the smart mobility systems.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3625236\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3625236","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)和人工智能(AI)的快速发展促进了智慧城市自适应交通控制系统(ATCS)的发展。特别是,深度强化学习(DRL)模型产生了最先进的性能,具有很大的实际应用潜力。在现有的基于drl的ATCS中,控制信号从附近车辆收集交通状态信息,然后根据收集到的信息确定最优动作(如切换相位)。DRL模型完全“相信”车辆正在向交通信号发送真实信息,这使得ATCS容易受到伪造信息的对抗性攻击。鉴于此,本文首次提出了一种新颖的任务,即一组车辆协同发送伪造信息“欺骗”基于drl的ATCS,以节省总行驶时间。为了解决所提出的任务,我们开发了CollusionVeh,这是一个通用且有效的车辆串通框架,由路况编码器、车辆解释器和通信机制组成。我们使用我们的框架来攻击已经建立的基于drl的ATCS,并证明通过合理的学习集数可以显著减少串通车辆的总旅行时间,并且如果串通车辆的数量增加,串通效应将减弱。此外,本文还为实际部署基于drl的ATCS提供了见解和建议。研究成果有助于提高ATCS的可靠性和鲁棒性,更好地保护智能交通系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial Attacks on Deep Reinforcement Learning-based Traffic Signal Control Systems with Colluding Vehicles

The rapid advancements of Internet of Things (IoT) and Artificial Intelligence (AI) have catalyzed the development of adaptive traffic control systems (ATCS) for smart cities. In particular, deep reinforcement learning (DRL) models produce state-of-the-art performance and have great potential for practical applications. In the existing DRL-based ATCS, the controlled signals collect traffic state information from nearby vehicles, and then optimal actions (e.g., switching phases) can be determined based on the collected information. The DRL models fully “trust” that vehicles are sending the true information to the traffic signals, making the ATCS vulnerable to adversarial attacks with falsified information. In view of this, this article first time formulates a novel task in which a group of vehicles can cooperatively send falsified information to “cheat” DRL-based ATCS in order to save their total travel time. To solve the proposed task, we develop CollusionVeh, a generic and effective vehicle-colluding framework composed of a road situation encoder, a vehicle interpreter, and a communication mechanism. We employ our framework to attack established DRL-based ATCS and demonstrate that the total travel time for the colluding vehicles can be significantly reduced with a reasonable number of learning episodes, and the colluding effect will decrease if the number of colluding vehicles increases. Additionally, insights and suggestions for the real-world deployment of DRL-based ATCS are provided. The research outcomes could help improve the reliability and robustness of the ATCS and better protect the smart mobility systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.30
自引率
2.00%
发文量
131
期刊介绍: ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world. ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信