Jaber Valizadeh, Alireza Zaki, Mohammad Movahed, Sasan Mazaheri, Hamidreza Talaei, Seyyed Mohammad Tabatabaei, Hadi Khorshidi, Uwe Aickelin
{"title":"考虑物联网应用的应急医疗服务运营规划","authors":"Jaber Valizadeh, Alireza Zaki, Mohammad Movahed, Sasan Mazaheri, Hamidreza Talaei, Seyyed Mohammad Tabatabaei, Hadi Khorshidi, Uwe Aickelin","doi":"10.1007/s12063-023-00423-7","DOIUrl":null,"url":null,"abstract":"<p>In the last two years, the worldwide outbreak of the COVID-19 pandemic and the resulting heavy casualties have highlighted the importance of further research in healthcare. In addition, the advent of new technologies such as the Internet of Things (IoT) and their applications in preventing and detecting casualty cases has attracted a lot of attention. The IoT is able to help organize medical services by collecting significant amounts of data and information. This paper proposes a novel mathematical model for Emergency Medical Services (EMS) using the IoT. The proposed model is designed in two phases. In the first phase, the data is collected by the IoT, and the demands for ambulances are categorized and prioritized. Then in the second phase, ambulances are allocated to demand areas (patients). Two main objectives of the proposed model are reducing total costs and the mortality risk due to lack of timely service. In addition, demand uncertainty for ambulances is considered with various scenarios at demand levels. Numerical experiments have been conducted on actual data from a case study in Kermanshah, Iran. Due to the NP-hard nature of the mathematical model, three meta-heuristic algorithms Multi-Objective Simulated Annealing (MOSA) algorithm and Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, and L-MOPSO have been used to solve the proposed model on medium and large scales in addition to the exact solution method. The results show that the proposed model significantly reduces mortality risk, in addition to reducing total cost. Data analysis also led to useful managerial insights.</p>","PeriodicalId":46120,"journal":{"name":"Operations Management Research","volume":"75 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An operational planning for emergency medical services considering the application of IoT\",\"authors\":\"Jaber Valizadeh, Alireza Zaki, Mohammad Movahed, Sasan Mazaheri, Hamidreza Talaei, Seyyed Mohammad Tabatabaei, Hadi Khorshidi, Uwe Aickelin\",\"doi\":\"10.1007/s12063-023-00423-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the last two years, the worldwide outbreak of the COVID-19 pandemic and the resulting heavy casualties have highlighted the importance of further research in healthcare. In addition, the advent of new technologies such as the Internet of Things (IoT) and their applications in preventing and detecting casualty cases has attracted a lot of attention. The IoT is able to help organize medical services by collecting significant amounts of data and information. This paper proposes a novel mathematical model for Emergency Medical Services (EMS) using the IoT. The proposed model is designed in two phases. In the first phase, the data is collected by the IoT, and the demands for ambulances are categorized and prioritized. Then in the second phase, ambulances are allocated to demand areas (patients). Two main objectives of the proposed model are reducing total costs and the mortality risk due to lack of timely service. In addition, demand uncertainty for ambulances is considered with various scenarios at demand levels. Numerical experiments have been conducted on actual data from a case study in Kermanshah, Iran. Due to the NP-hard nature of the mathematical model, three meta-heuristic algorithms Multi-Objective Simulated Annealing (MOSA) algorithm and Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, and L-MOPSO have been used to solve the proposed model on medium and large scales in addition to the exact solution method. The results show that the proposed model significantly reduces mortality risk, in addition to reducing total cost. Data analysis also led to useful managerial insights.</p>\",\"PeriodicalId\":46120,\"journal\":{\"name\":\"Operations Management Research\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Management Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s12063-023-00423-7\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Management Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s12063-023-00423-7","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
An operational planning for emergency medical services considering the application of IoT
In the last two years, the worldwide outbreak of the COVID-19 pandemic and the resulting heavy casualties have highlighted the importance of further research in healthcare. In addition, the advent of new technologies such as the Internet of Things (IoT) and their applications in preventing and detecting casualty cases has attracted a lot of attention. The IoT is able to help organize medical services by collecting significant amounts of data and information. This paper proposes a novel mathematical model for Emergency Medical Services (EMS) using the IoT. The proposed model is designed in two phases. In the first phase, the data is collected by the IoT, and the demands for ambulances are categorized and prioritized. Then in the second phase, ambulances are allocated to demand areas (patients). Two main objectives of the proposed model are reducing total costs and the mortality risk due to lack of timely service. In addition, demand uncertainty for ambulances is considered with various scenarios at demand levels. Numerical experiments have been conducted on actual data from a case study in Kermanshah, Iran. Due to the NP-hard nature of the mathematical model, three meta-heuristic algorithms Multi-Objective Simulated Annealing (MOSA) algorithm and Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, and L-MOPSO have been used to solve the proposed model on medium and large scales in addition to the exact solution method. The results show that the proposed model significantly reduces mortality risk, in addition to reducing total cost. Data analysis also led to useful managerial insights.
期刊介绍:
Operations Management Research is a peer-reviewed journal that focuses on rapidly publishing high-quality research in the field of operations management. It aims to advance both the theory and practice of operations management across a wide range of topics and research paradigms. The journal covers all aspects of operations management, including manufacturing, supply chain, health care, and service operations. It welcomes various research methodologies, such as case studies, action research, surveys, mathematical modeling, and simulation. The goal of Operations Management Research is to promote research that enhances both the theory and practice of operations management, as it is an applied discipline. The journal also publishes Academic Notes, which are special papers that address research methodologies, the direction of the operations management field, and other topics of interest to academicians. Additionally, there is a demand for shorter and more focused research articles in operations management, which this journal aims to fulfill.