Andreas Kofler, Fabian Altekrüger, Fatima Antarou Ba, Christoph Kolbitsch, Evangelos Papoutsellis, David Schote, Clemens Sirotenko, Felix Frederik Zimmermann, Kostas Papafitsoros
{"title":"基于深度神经网络的变分图像重构正则化参数映射学习及算法展开","authors":"Andreas Kofler, Fabian Altekrüger, Fatima Antarou Ba, Christoph Kolbitsch, Evangelos Papoutsellis, David Schote, Clemens Sirotenko, Felix Frederik Zimmermann, Kostas Papafitsoros","doi":"10.1137/23m1552486","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 16, Issue 4, Page 2202-2246, December 2023. <br/> Abstract. We introduce a method for the fast estimation of data-adapted, spatially and temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV) minimization. The proposed approach is inspired by recent developments in algorithm unrolling using deep neural networks (NNs) and relies on two distinct subnetworks. The first subnetwork estimates the regularization parameter-map from the input data. The second subnetwork unrolls [math] iterations of an iterative algorithm which approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is then trained end-to-end in a supervised learning fashion using pairs of clean and corrupted data but crucially without the need for access to labels for the optimal regularization parameter-maps. We first prove consistency of the unrolled scheme by showing that the unrolled minimizing energy functional used for the supervised learning [math]-converges, as [math] tends to infinity, to the corresponding functional that incorporates the exact solution map of the TV-minimization problem. Then, we apply and evaluate the proposed method on a variety of large-scale and dynamic imaging problems with retrospectively simulated measurement data for which the automatic computation of such regularization parameters has been so far challenging using the state-of-the-art methods: a 2D dynamic cardiac magnetic resonance imaging (MRI) reconstruction problem, a quantitative brain MRI reconstruction problem, a low-dose computed tomography problem, and a dynamic image denoising problem. The proposed method consistently improves the TV reconstructions using scalar regularization parameters, and the obtained regularization parameter-maps adapt well to imaging problems and data by leading to the preservation of detailed features. Although the choice of the regularization parameter-maps is data-driven and based on NNs, the subsequent reconstruction algorithm is interpretable since it inherits the properties (e.g., convergence guarantees) of the iterative reconstruction method from which the network is implicitly defined.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"69 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Regularization Parameter-Maps for Variational Image Reconstruction Using Deep Neural Networks and Algorithm Unrolling\",\"authors\":\"Andreas Kofler, Fabian Altekrüger, Fatima Antarou Ba, Christoph Kolbitsch, Evangelos Papoutsellis, David Schote, Clemens Sirotenko, Felix Frederik Zimmermann, Kostas Papafitsoros\",\"doi\":\"10.1137/23m1552486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 16, Issue 4, Page 2202-2246, December 2023. <br/> Abstract. We introduce a method for the fast estimation of data-adapted, spatially and temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV) minimization. The proposed approach is inspired by recent developments in algorithm unrolling using deep neural networks (NNs) and relies on two distinct subnetworks. The first subnetwork estimates the regularization parameter-map from the input data. The second subnetwork unrolls [math] iterations of an iterative algorithm which approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is then trained end-to-end in a supervised learning fashion using pairs of clean and corrupted data but crucially without the need for access to labels for the optimal regularization parameter-maps. We first prove consistency of the unrolled scheme by showing that the unrolled minimizing energy functional used for the supervised learning [math]-converges, as [math] tends to infinity, to the corresponding functional that incorporates the exact solution map of the TV-minimization problem. Then, we apply and evaluate the proposed method on a variety of large-scale and dynamic imaging problems with retrospectively simulated measurement data for which the automatic computation of such regularization parameters has been so far challenging using the state-of-the-art methods: a 2D dynamic cardiac magnetic resonance imaging (MRI) reconstruction problem, a quantitative brain MRI reconstruction problem, a low-dose computed tomography problem, and a dynamic image denoising problem. The proposed method consistently improves the TV reconstructions using scalar regularization parameters, and the obtained regularization parameter-maps adapt well to imaging problems and data by leading to the preservation of detailed features. Although the choice of the regularization parameter-maps is data-driven and based on NNs, the subsequent reconstruction algorithm is interpretable since it inherits the properties (e.g., convergence guarantees) of the iterative reconstruction method from which the network is implicitly defined.\",\"PeriodicalId\":49528,\"journal\":{\"name\":\"SIAM Journal on Imaging Sciences\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Imaging Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1552486\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552486","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning Regularization Parameter-Maps for Variational Image Reconstruction Using Deep Neural Networks and Algorithm Unrolling
SIAM Journal on Imaging Sciences, Volume 16, Issue 4, Page 2202-2246, December 2023. Abstract. We introduce a method for the fast estimation of data-adapted, spatially and temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV) minimization. The proposed approach is inspired by recent developments in algorithm unrolling using deep neural networks (NNs) and relies on two distinct subnetworks. The first subnetwork estimates the regularization parameter-map from the input data. The second subnetwork unrolls [math] iterations of an iterative algorithm which approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is then trained end-to-end in a supervised learning fashion using pairs of clean and corrupted data but crucially without the need for access to labels for the optimal regularization parameter-maps. We first prove consistency of the unrolled scheme by showing that the unrolled minimizing energy functional used for the supervised learning [math]-converges, as [math] tends to infinity, to the corresponding functional that incorporates the exact solution map of the TV-minimization problem. Then, we apply and evaluate the proposed method on a variety of large-scale and dynamic imaging problems with retrospectively simulated measurement data for which the automatic computation of such regularization parameters has been so far challenging using the state-of-the-art methods: a 2D dynamic cardiac magnetic resonance imaging (MRI) reconstruction problem, a quantitative brain MRI reconstruction problem, a low-dose computed tomography problem, and a dynamic image denoising problem. The proposed method consistently improves the TV reconstructions using scalar regularization parameters, and the obtained regularization parameter-maps adapt well to imaging problems and data by leading to the preservation of detailed features. Although the choice of the regularization parameter-maps is data-driven and based on NNs, the subsequent reconstruction algorithm is interpretable since it inherits the properties (e.g., convergence guarantees) of the iterative reconstruction method from which the network is implicitly defined.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.