{"title":"自监督深度学习用于图像重建:一种Langevin Monte Carlo方法","authors":"Ji Li, Weixi Wang, Hui Ji","doi":"10.1137/23m1548025","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 16, Issue 4, Page 2247-2284, December 2023. <br/> Abstract. Deep learning has proved to be a powerful tool for solving inverse problems in imaging, and most of the related work is based on supervised learning. In many applications, collecting truth images is a challenging and costly task, and the prerequisite of having a training dataset of truth images limits its applicability. This paper proposes a self-supervised deep learning method for solving inverse imaging problems that does not require any training samples. The proposed approach is built on a reparametrization of latent images using a convolutional neural network, and the reconstruction is motivated by approximating the minimum mean square error estimate of the latent image using a Langevin dynamics–based Monte Carlo (MC) method. To efficiently sample the network weights in the context of image reconstruction, we propose a Langevin MC scheme called Adam-LD, inspired by the well-known optimizer in deep learning, Adam. The proposed method is applied to solve linear and nonlinear inverse problems, specifically, sparse-view computed tomography image reconstruction and phase retrieval. Our experiments demonstrate that the proposed method outperforms existing unsupervised or self-supervised solutions in terms of reconstruction quality.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"33 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Supervised Deep Learning for Image Reconstruction: A Langevin Monte Carlo Approach\",\"authors\":\"Ji Li, Weixi Wang, Hui Ji\",\"doi\":\"10.1137/23m1548025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 16, Issue 4, Page 2247-2284, December 2023. <br/> Abstract. Deep learning has proved to be a powerful tool for solving inverse problems in imaging, and most of the related work is based on supervised learning. In many applications, collecting truth images is a challenging and costly task, and the prerequisite of having a training dataset of truth images limits its applicability. This paper proposes a self-supervised deep learning method for solving inverse imaging problems that does not require any training samples. The proposed approach is built on a reparametrization of latent images using a convolutional neural network, and the reconstruction is motivated by approximating the minimum mean square error estimate of the latent image using a Langevin dynamics–based Monte Carlo (MC) method. To efficiently sample the network weights in the context of image reconstruction, we propose a Langevin MC scheme called Adam-LD, inspired by the well-known optimizer in deep learning, Adam. The proposed method is applied to solve linear and nonlinear inverse problems, specifically, sparse-view computed tomography image reconstruction and phase retrieval. Our experiments demonstrate that the proposed method outperforms existing unsupervised or self-supervised solutions in terms of reconstruction quality.\",\"PeriodicalId\":49528,\"journal\":{\"name\":\"SIAM Journal on Imaging Sciences\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Imaging Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1548025\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1548025","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Self-Supervised Deep Learning for Image Reconstruction: A Langevin Monte Carlo Approach
SIAM Journal on Imaging Sciences, Volume 16, Issue 4, Page 2247-2284, December 2023. Abstract. Deep learning has proved to be a powerful tool for solving inverse problems in imaging, and most of the related work is based on supervised learning. In many applications, collecting truth images is a challenging and costly task, and the prerequisite of having a training dataset of truth images limits its applicability. This paper proposes a self-supervised deep learning method for solving inverse imaging problems that does not require any training samples. The proposed approach is built on a reparametrization of latent images using a convolutional neural network, and the reconstruction is motivated by approximating the minimum mean square error estimate of the latent image using a Langevin dynamics–based Monte Carlo (MC) method. To efficiently sample the network weights in the context of image reconstruction, we propose a Langevin MC scheme called Adam-LD, inspired by the well-known optimizer in deep learning, Adam. The proposed method is applied to solve linear and nonlinear inverse problems, specifically, sparse-view computed tomography image reconstruction and phase retrieval. Our experiments demonstrate that the proposed method outperforms existing unsupervised or self-supervised solutions in terms of reconstruction quality.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.