基于应力-损伤-渗流相互作用地球动力系统的煤与瓦斯突出消除机制

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS
Lingjin Xu, Chaojun Fan, Mingkun Luo, Sheng Li, Jun Han, Xiang Fu, Bin Xiao
{"title":"基于应力-损伤-渗流相互作用地球动力系统的煤与瓦斯突出消除机制","authors":"Lingjin Xu, Chaojun Fan, Mingkun Luo, Sheng Li, Jun Han, Xiang Fu, Bin Xiao","doi":"10.1007/s40789-023-00651-z","DOIUrl":null,"url":null,"abstract":"<p>Coal and gas outburst is a complex dynamic disaster during coal underground mining. Revealing the disaster mechanism is of great significance for accurate prediction and prevention of coal and gas outburst. The geo-dynamic system of coal and gas outburst is proposed. The framework of geo-dynamic system is composed of gassy coal mass, geological dynamic environment and mining disturbance. Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in floor roadway. The results show the occurrence of outburst is divided into the evolution process of gestation, formation, development and termination of geo-dynamic system. The scale range of outburst occurrence is determined, which provides a spatial basis for the prevention and control of outburst. The formation criterion and instability criterion of coal and gas outburst are established. The formation criterion <i>F</i><sub>1</sub> is defined as the scale of the geo-dynamic system, and the instability criterion <i>F</i><sub>2</sub> is defined as the scale of the outburst geo-body. According to the geo-dynamic system, the elimination mechanism of coal and gas outburst—‘unloading + depressurization’ is established, and the gas extraction by boreholes through layer in floor roadway for outburst elimination is given. For the research case, when the gas extraction is 120 days, the gas pressure of the coal seam is reduced to below 0.4 MPa, and the outburst danger is eliminated effectively.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"8 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elimination mechanism of coal and gas outburst based on geo-dynamic system with stress–damage–seepage interactions\",\"authors\":\"Lingjin Xu, Chaojun Fan, Mingkun Luo, Sheng Li, Jun Han, Xiang Fu, Bin Xiao\",\"doi\":\"10.1007/s40789-023-00651-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coal and gas outburst is a complex dynamic disaster during coal underground mining. Revealing the disaster mechanism is of great significance for accurate prediction and prevention of coal and gas outburst. The geo-dynamic system of coal and gas outburst is proposed. The framework of geo-dynamic system is composed of gassy coal mass, geological dynamic environment and mining disturbance. Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in floor roadway. The results show the occurrence of outburst is divided into the evolution process of gestation, formation, development and termination of geo-dynamic system. The scale range of outburst occurrence is determined, which provides a spatial basis for the prevention and control of outburst. The formation criterion and instability criterion of coal and gas outburst are established. The formation criterion <i>F</i><sub>1</sub> is defined as the scale of the geo-dynamic system, and the instability criterion <i>F</i><sub>2</sub> is defined as the scale of the outburst geo-body. According to the geo-dynamic system, the elimination mechanism of coal and gas outburst—‘unloading + depressurization’ is established, and the gas extraction by boreholes through layer in floor roadway for outburst elimination is given. For the research case, when the gas extraction is 120 days, the gas pressure of the coal seam is reduced to below 0.4 MPa, and the outburst danger is eliminated effectively.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-023-00651-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-023-00651-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

煤与瓦斯突出是煤矿井下开采中一种复杂的动力灾害。揭示灾害机理对准确预测和防治煤与瓦斯突出具有重要意义。提出了煤与瓦斯突出的地球动力系统。瓦斯煤体、地质动力环境和采矿扰动构成了地球动力系统的框架。建立了瓦斯煤体应力-损伤-渗流相互作用方程,求解了底板巷道钻孔穿层抽采消突过程。结果表明:突出的发生可分为地球动力系统孕育、形成、发展和终止的演化过程;确定了突出发生的尺度范围,为突出防治提供了空间依据。建立了煤与瓦斯突出的形成判据和失稳判据。将形成判据F1定义为地球动力系统的尺度,将失稳判据F2定义为突出地质体的尺度。根据地球动力系统,建立了煤与瓦斯突出消除机制——“卸荷+降压”,并给出了煤层底板巷道穿层抽放瓦斯消除突出的方法。研究案例在抽采120 d时,煤层瓦斯压力降至0.4 MPa以下,有效消除了突出危险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elimination mechanism of coal and gas outburst based on geo-dynamic system with stress–damage–seepage interactions

Elimination mechanism of coal and gas outburst based on geo-dynamic system with stress–damage–seepage interactions

Coal and gas outburst is a complex dynamic disaster during coal underground mining. Revealing the disaster mechanism is of great significance for accurate prediction and prevention of coal and gas outburst. The geo-dynamic system of coal and gas outburst is proposed. The framework of geo-dynamic system is composed of gassy coal mass, geological dynamic environment and mining disturbance. Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in floor roadway. The results show the occurrence of outburst is divided into the evolution process of gestation, formation, development and termination of geo-dynamic system. The scale range of outburst occurrence is determined, which provides a spatial basis for the prevention and control of outburst. The formation criterion and instability criterion of coal and gas outburst are established. The formation criterion F1 is defined as the scale of the geo-dynamic system, and the instability criterion F2 is defined as the scale of the outburst geo-body. According to the geo-dynamic system, the elimination mechanism of coal and gas outburst—‘unloading + depressurization’ is established, and the gas extraction by boreholes through layer in floor roadway for outburst elimination is given. For the research case, when the gas extraction is 120 days, the gas pressure of the coal seam is reduced to below 0.4 MPa, and the outburst danger is eliminated effectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信