Manoharan Karthic, Kunjan Chockalingam, Chandran Vignesh, K Jawaharlal Nagarajan
{"title":"3d打印石墨烯增强PLA骨再生支架的表征","authors":"Manoharan Karthic, Kunjan Chockalingam, Chandran Vignesh, K Jawaharlal Nagarajan","doi":"10.1680/jemmr.23.00048","DOIUrl":null,"url":null,"abstract":"In orthopedic application, bone tissue engineering (BTE) is a novel treatment method for bone defects involving bone regeneration using an artificial supporting structure called scaffold. The aim of this work is to fabricate graphene-reinforced poly(lactic acid) (PLA/Gr) scaffolds with different pore shapes (circular, square and hexagonal) and different pore sizes (1000, 1500 and 2000 μm) using the fused deposition modeling process. The characteristics of the three-dimensionally (3D) printed PLA/Gr scaffolds were analyzed through Fourier transform infrared spectroscopy, thermogravimetric analysis, derivative thermogravimetry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The water contact angle measurement showed a hydrophilic surface (70 ± 2.7°) for scaffolds with a pore size of 1000 μm. Mechanical property studies showed that the scaffold with circular 1000 μm pores had a compressive strength of 18.53 ± 0.90 MPa, which was similar to the cancellous bone value. In addition, this study involved an examination of the in vitro bioactivity, water uptake and biodegradation characteristics of the scaffolds. The results reveal that the 3D-printed PLA/Gr scaffold featuring a circular pore shape with a pore size of 1000 μm exhibits great potential as an implant for BTE.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":"29 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of 3D-printed graphene-reinforced PLA scaffold for bone regeneration\",\"authors\":\"Manoharan Karthic, Kunjan Chockalingam, Chandran Vignesh, K Jawaharlal Nagarajan\",\"doi\":\"10.1680/jemmr.23.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In orthopedic application, bone tissue engineering (BTE) is a novel treatment method for bone defects involving bone regeneration using an artificial supporting structure called scaffold. The aim of this work is to fabricate graphene-reinforced poly(lactic acid) (PLA/Gr) scaffolds with different pore shapes (circular, square and hexagonal) and different pore sizes (1000, 1500 and 2000 μm) using the fused deposition modeling process. The characteristics of the three-dimensionally (3D) printed PLA/Gr scaffolds were analyzed through Fourier transform infrared spectroscopy, thermogravimetric analysis, derivative thermogravimetry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The water contact angle measurement showed a hydrophilic surface (70 ± 2.7°) for scaffolds with a pore size of 1000 μm. Mechanical property studies showed that the scaffold with circular 1000 μm pores had a compressive strength of 18.53 ± 0.90 MPa, which was similar to the cancellous bone value. In addition, this study involved an examination of the in vitro bioactivity, water uptake and biodegradation characteristics of the scaffolds. The results reveal that the 3D-printed PLA/Gr scaffold featuring a circular pore shape with a pore size of 1000 μm exhibits great potential as an implant for BTE.\",\"PeriodicalId\":11537,\"journal\":{\"name\":\"Emerging Materials Research\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jemmr.23.00048\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jemmr.23.00048","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterization of 3D-printed graphene-reinforced PLA scaffold for bone regeneration
In orthopedic application, bone tissue engineering (BTE) is a novel treatment method for bone defects involving bone regeneration using an artificial supporting structure called scaffold. The aim of this work is to fabricate graphene-reinforced poly(lactic acid) (PLA/Gr) scaffolds with different pore shapes (circular, square and hexagonal) and different pore sizes (1000, 1500 and 2000 μm) using the fused deposition modeling process. The characteristics of the three-dimensionally (3D) printed PLA/Gr scaffolds were analyzed through Fourier transform infrared spectroscopy, thermogravimetric analysis, derivative thermogravimetry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The water contact angle measurement showed a hydrophilic surface (70 ± 2.7°) for scaffolds with a pore size of 1000 μm. Mechanical property studies showed that the scaffold with circular 1000 μm pores had a compressive strength of 18.53 ± 0.90 MPa, which was similar to the cancellous bone value. In addition, this study involved an examination of the in vitro bioactivity, water uptake and biodegradation characteristics of the scaffolds. The results reveal that the 3D-printed PLA/Gr scaffold featuring a circular pore shape with a pore size of 1000 μm exhibits great potential as an implant for BTE.
期刊介绍:
Materials Research is constantly evolving and correlations between process, structure, properties and performance which are application specific require expert understanding at the macro-, micro- and nano-scale. The ability to intelligently manipulate material properties and tailor them for desired applications is of constant interest and challenge within universities, national labs and industry.