演化p-双拉普拉斯方程的离散化

IF 0.4 Q4 MATHEMATICS, APPLIED
M. Djaghout, A. Chaoui, K. Zennir
{"title":"演化p-双拉普拉斯方程的离散化","authors":"M. Djaghout, A. Chaoui, K. Zennir","doi":"10.1134/s1995423922040036","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This article discusses a mixed finite element method combined with the backward-Euler method to study the hyperbolic <i>p</i>–bi-Laplace equation, where the existence and uniqueness of solution for the discretized problem are shown in Lebesgue and Sobolev spaces. A mixed formulation and an inf-sup condition are then given to prove the well-posedness of the scheme and optimal a priori error estimates for fully discrete schemes are extracted. Finally, a numerical example is given to confirm the theoretical results obtained.</p>","PeriodicalId":43697,"journal":{"name":"Numerical Analysis and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Discretization of the Evolution p-Bi-Laplace Equation\",\"authors\":\"M. Djaghout, A. Chaoui, K. Zennir\",\"doi\":\"10.1134/s1995423922040036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This article discusses a mixed finite element method combined with the backward-Euler method to study the hyperbolic <i>p</i>–bi-Laplace equation, where the existence and uniqueness of solution for the discretized problem are shown in Lebesgue and Sobolev spaces. A mixed formulation and an inf-sup condition are then given to prove the well-posedness of the scheme and optimal a priori error estimates for fully discrete schemes are extracted. Finally, a numerical example is given to confirm the theoretical results obtained.</p>\",\"PeriodicalId\":43697,\"journal\":{\"name\":\"Numerical Analysis and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995423922040036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995423922040036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文讨论了用混合有限元法结合后向欧拉法研究双曲型p -双拉普拉斯方程,在Lebesgue和Sobolev空间中给出了离散问题解的存在唯一性。然后给出了一个混合公式和一个自支撑条件来证明该格式的适定性,并提取了完全离散格式的最优先验误差估计。最后通过数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Discretization of the Evolution p-Bi-Laplace Equation

On Discretization of the Evolution p-Bi-Laplace Equation

Abstract

This article discusses a mixed finite element method combined with the backward-Euler method to study the hyperbolic p–bi-Laplace equation, where the existence and uniqueness of solution for the discretized problem are shown in Lebesgue and Sobolev spaces. A mixed formulation and an inf-sup condition are then given to prove the well-posedness of the scheme and optimal a priori error estimates for fully discrete schemes are extracted. Finally, a numerical example is given to confirm the theoretical results obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Analysis and Applications
Numerical Analysis and Applications MATHEMATICS, APPLIED-
CiteScore
1.00
自引率
0.00%
发文量
22
期刊介绍: Numerical Analysis and Applications is the translation of Russian periodical Sibirskii Zhurnal Vychislitel’noi Matematiki (Siberian Journal of Numerical Mathematics) published by the Siberian Branch of the Russian Academy of Sciences Publishing House since 1998. The aim of this journal is to demonstrate, in concentrated form, to the Russian and International Mathematical Community the latest and most important investigations of Siberian numerical mathematicians in various scientific and engineering fields. The journal deals with the following topics: Theory and practice of computational methods, mathematical physics, and other applied fields; Mathematical models of elasticity theory, hydrodynamics, gas dynamics, and geophysics; Parallelizing of algorithms; Models and methods of bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信